ramimu's picture
Upload 586 files
1c72248 verified
import math
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random
class Adafactor(torch.optim.Optimizer):
"""
Adafactor implementation with stochastic rounding accumulation and stochastic rounding on apply.
Modified from transformers Adafactor implementation to support stochastic rounding accumulation and apply.
AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that
this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and
`warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*):
The external learning rate.
eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`):
Regularization constants for square gradient and parameter scale respectively
clip_threshold (`float`, *optional*, defaults to 1.0):
Threshold of root mean square of final gradient update
decay_rate (`float`, *optional*, defaults to -0.8):
Coefficient used to compute running averages of square
beta1 (`float`, *optional*):
Coefficient used for computing running averages of gradient
weight_decay (`float`, *optional*, defaults to 0.0):
Weight decay (L2 penalty)
scale_parameter (`bool`, *optional*, defaults to `True`):
If True, learning rate is scaled by root mean square
relative_step (`bool`, *optional*, defaults to `True`):
If True, time-dependent learning rate is computed instead of external learning rate
warmup_init (`bool`, *optional*, defaults to `False`):
Time-dependent learning rate computation depends on whether warm-up initialization is being used
This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.
Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):
- Training without LR warmup or clip_threshold is not recommended.
- use scheduled LR warm-up to fixed LR
- use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235)
- Disable relative updates
- Use scale_parameter=False
- Additional optimizer operations like gradient clipping should not be used alongside Adafactor
Example:
```python
Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
```
Others reported the following combination to work well:
```python
Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
```
When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
scheduler as following:
```python
from transformers.optimization import Adafactor, AdafactorSchedule
optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
lr_scheduler = AdafactorSchedule(optimizer)
trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
```
Usage:
```python
# replace AdamW with Adafactor
optimizer = Adafactor(
model.parameters(),
lr=1e-3,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
```"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
do_paramiter_swapping=False,
paramiter_swapping_factor=0.1,
stochastic_accumulation=True,
):
if lr is not None and relative_step:
raise ValueError(
"Cannot combine manual `lr` and `relative_step=True` options")
if warmup_init and not relative_step:
raise ValueError(
"`warmup_init=True` requires `relative_step=True`")
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"beta1": beta1,
"weight_decay": weight_decay,
"scale_parameter": scale_parameter,
"relative_step": relative_step,
"warmup_init": warmup_init,
}
super().__init__(params, defaults)
self.base_lrs: List[float] = [
lr for group in self.param_groups
]
self.is_stochastic_rounding_accumulation = False
# setup stochastic grad accum hooks
if stochastic_accumulation:
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and param.dtype != torch.float32:
self.is_stochastic_rounding_accumulation = True
param.register_post_accumulate_grad_hook(
stochastic_grad_accummulation
)
self.do_paramiter_swapping = do_paramiter_swapping
self.paramiter_swapping_factor = paramiter_swapping_factor
self._total_paramiter_size = 0
# count total paramiters
for group in self.param_groups:
for param in group['params']:
self._total_paramiter_size += torch.numel(param)
# pretty print total paramiters with comma seperation
print(f"Total training paramiters: {self._total_paramiter_size:,}")
# needs to be enabled to count paramiters
if self.do_paramiter_swapping:
self.enable_paramiter_swapping(self.paramiter_swapping_factor)
def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
self.do_paramiter_swapping = True
self.paramiter_swapping_factor = paramiter_swapping_factor
# call it an initial time
self.swap_paramiters()
def swap_paramiters(self):
all_params = []
# deactivate all paramiters
for group in self.param_groups:
for param in group['params']:
param.requires_grad_(False)
# remove any grad
param.grad = None
all_params.append(param)
# shuffle all paramiters
random.shuffle(all_params)
# keep activating paramiters until we are going to go over the target paramiters
target_paramiters = int(self._total_paramiter_size * self.paramiter_swapping_factor)
total_paramiters = 0
for param in all_params:
total_paramiters += torch.numel(param)
if total_paramiters >= target_paramiters:
break
else:
param.requires_grad_(True)
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * \
param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
# copy from fairseq's adafactor implementation:
# https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step_hook(self):
if not self.is_stochastic_rounding_accumulation:
return
# copy over stochastically rounded grads
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and hasattr(param, "_accum_grad"):
param.grad = param._accum_grad
del param._accum_grad
# adafactor manages its own lr
def get_learning_rates(self):
lrs = [
self._get_lr(group, self.state[group["params"][0]])
for group in self.param_groups
if group["params"][0].grad is not None
]
if len(lrs) == 0:
lrs = self.base_lrs # if called before stepping
return lrs
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self.step_hook()
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None or not p.requires_grad:
continue
grad = p.grad
if grad.dtype != torch.float32:
grad = grad.to(torch.float32)
if grad.is_sparse:
raise RuntimeError(
"Adafactor does not support sparse gradients.")
# if p has atts _scale then it is quantized. We need to divide the grad by the scale
# if hasattr(p, "_scale"):
# grad = grad / p._scale
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(
group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(
grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(
grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if isinstance(p_data_fp32, QBytesTensor):
p_data_fp32 = p_data_fp32.dequantize()
if p.dtype != torch.float32:
p_data_fp32 = p_data_fp32.clone().float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
eps = group["eps"]
if isinstance(eps, tuple) or isinstance(eps, list):
eps = eps[0]
update = (grad**2) + eps
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(
update.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(
update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(
exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(
update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=(-group["weight_decay"] * lr))
p_data_fp32.add_(-update)
if p.dtype != torch.float32:
# apply stochastic rounding
copy_stochastic(p, p_data_fp32)
return loss