File size: 14,333 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import math
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random


class Adafactor(torch.optim.Optimizer):
    """
    Adafactor implementation with stochastic rounding accumulation and stochastic rounding on apply.
    Modified from transformers Adafactor implementation to support stochastic rounding accumulation and apply.

    AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
    https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py

    Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that
    this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and
    `warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
    `relative_step=False`.

    Arguments:
        params (`Iterable[nn.parameter.Parameter]`):
            Iterable of parameters to optimize or dictionaries defining parameter groups.
        lr (`float`, *optional*):
            The external learning rate.
        eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`):
            Regularization constants for square gradient and parameter scale respectively
        clip_threshold (`float`, *optional*, defaults to 1.0):
            Threshold of root mean square of final gradient update
        decay_rate (`float`, *optional*, defaults to -0.8):
            Coefficient used to compute running averages of square
        beta1 (`float`, *optional*):
            Coefficient used for computing running averages of gradient
        weight_decay (`float`, *optional*, defaults to 0.0):
            Weight decay (L2 penalty)
        scale_parameter (`bool`, *optional*, defaults to `True`):
            If True, learning rate is scaled by root mean square
        relative_step (`bool`, *optional*, defaults to `True`):
            If True, time-dependent learning rate is computed instead of external learning rate
        warmup_init (`bool`, *optional*, defaults to `False`):
            Time-dependent learning rate computation depends on whether warm-up initialization is being used

    This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.

    Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):

        - Training without LR warmup or clip_threshold is not recommended.

           - use scheduled LR warm-up to fixed LR
           - use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235)
        - Disable relative updates
        - Use scale_parameter=False
        - Additional optimizer operations like gradient clipping should not be used alongside Adafactor

    Example:

    ```python
    Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
    ```

    Others reported the following combination to work well:

    ```python
    Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    ```

    When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
    scheduler as following:

    ```python
    from transformers.optimization import Adafactor, AdafactorSchedule

    optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    lr_scheduler = AdafactorSchedule(optimizer)
    trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
    ```

    Usage:

    ```python
    # replace AdamW with Adafactor
    optimizer = Adafactor(
        model.parameters(),
        lr=1e-3,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        relative_step=False,
        scale_parameter=False,
        warmup_init=False,
    )
    ```"""

    def __init__(
        self,
        params,
        lr=None,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        scale_parameter=True,
        relative_step=True,
        warmup_init=False,
        do_paramiter_swapping=False,
        paramiter_swapping_factor=0.1,
        stochastic_accumulation=True,
    ):
        if lr is not None and relative_step:
            raise ValueError(
                "Cannot combine manual `lr` and `relative_step=True` options")
        if warmup_init and not relative_step:
            raise ValueError(
                "`warmup_init=True` requires `relative_step=True`")

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "decay_rate": decay_rate,
            "beta1": beta1,
            "weight_decay": weight_decay,
            "scale_parameter": scale_parameter,
            "relative_step": relative_step,
            "warmup_init": warmup_init,
        }
        super().__init__(params, defaults)
        
        self.base_lrs: List[float] = [
            lr for group in self.param_groups
        ]

        self.is_stochastic_rounding_accumulation = False

        # setup stochastic grad accum hooks
        if stochastic_accumulation:
            for group in self.param_groups:
                for param in group['params']:
                    if param.requires_grad and param.dtype != torch.float32:
                        self.is_stochastic_rounding_accumulation = True
                        param.register_post_accumulate_grad_hook(
                            stochastic_grad_accummulation
                        )
    
        self.do_paramiter_swapping = do_paramiter_swapping
        self.paramiter_swapping_factor = paramiter_swapping_factor
        self._total_paramiter_size = 0
        # count total paramiters
        for group in self.param_groups:
            for param in group['params']:
                self._total_paramiter_size += torch.numel(param)
        # pretty print total paramiters with comma seperation
        print(f"Total training paramiters: {self._total_paramiter_size:,}")
        
        # needs to be enabled to count paramiters
        if self.do_paramiter_swapping:
            self.enable_paramiter_swapping(self.paramiter_swapping_factor)
        
    
    def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
        self.do_paramiter_swapping = True
        self.paramiter_swapping_factor = paramiter_swapping_factor
        # call it an initial time
        self.swap_paramiters()
                    
    def swap_paramiters(self):
        all_params = []
        # deactivate all paramiters
        for group in self.param_groups:
            for param in group['params']:
                param.requires_grad_(False)
                # remove any grad
                param.grad = None
                all_params.append(param)
        # shuffle all paramiters
        random.shuffle(all_params)
        
        # keep activating paramiters until we are going to go over the target paramiters
        target_paramiters = int(self._total_paramiter_size * self.paramiter_swapping_factor)
        total_paramiters = 0
        for param in all_params:
            total_paramiters += torch.numel(param)
            if total_paramiters >= target_paramiters:
                break
            else:
                param.requires_grad_(True)

    @staticmethod
    def _get_lr(param_group, param_state):
        rel_step_sz = param_group["lr"]
        if param_group["relative_step"]:
            min_step = 1e-6 * \
                param_state["step"] if param_group["warmup_init"] else 1e-2
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
        param_scale = 1.0
        if param_group["scale_parameter"]:
            param_scale = max(param_group["eps"][1], param_state["RMS"])
        return param_scale * rel_step_sz

    @staticmethod
    def _get_options(param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group["beta1"] is not None
        return factored, use_first_moment

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        # copy from fairseq's adafactor implementation:
        # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
                    1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step_hook(self):
        if not self.is_stochastic_rounding_accumulation:
            return
        # copy over stochastically rounded grads
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and hasattr(param, "_accum_grad"):
                    param.grad = param._accum_grad
                    del param._accum_grad

    # adafactor manages its own lr
    def get_learning_rates(self):
        lrs = [
            self._get_lr(group, self.state[group["params"][0]])
            for group in self.param_groups
            if group["params"][0].grad is not None
        ]
        if len(lrs) == 0:
            lrs = self.base_lrs  # if called before stepping
        return lrs

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self.step_hook()
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None or not p.requires_grad:
                    continue

                grad = p.grad
                if grad.dtype != torch.float32:
                    grad = grad.to(torch.float32)
                if grad.is_sparse:
                    raise RuntimeError(
                        "Adafactor does not support sparse gradients.")
                
                # if p has atts _scale then it is quantized. We need to divide the grad by the scale
                # if hasattr(p, "_scale"):
                #     grad = grad / p._scale

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(
                    group, grad_shape)
                # State Initialization
                if len(state) == 0:
                    state["step"] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state["exp_avg"] = torch.zeros_like(grad)
                    if factored:
                        state["exp_avg_sq_row"] = torch.zeros(
                            grad_shape[:-1]).to(grad)
                        state["exp_avg_sq_col"] = torch.zeros(
                            grad_shape[:-2] + grad_shape[-1:]).to(grad)
                    else:
                        state["exp_avg_sq"] = torch.zeros_like(grad)

                    state["RMS"] = 0
                else:
                    if use_first_moment:
                        state["exp_avg"] = state["exp_avg"].to(grad)
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(
                            grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(
                            grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p
                
                if isinstance(p_data_fp32, QBytesTensor):
                    p_data_fp32 = p_data_fp32.dequantize()
                if p.dtype != torch.float32:
                    p_data_fp32 = p_data_fp32.clone().float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                lr = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                eps = group["eps"]
                if isinstance(eps, tuple) or isinstance(eps, list):
                    eps = eps[0]
                update = (grad**2) + eps
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(
                        update.mean(dim=-1), alpha=(1.0 - beta2t))
                    exp_avg_sq_col.mul_(beta2t).add_(
                        update.mean(dim=-2), alpha=(1.0 - beta2t))

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(
                        exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_(
                    (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
                update.mul_(lr)

                if use_first_moment:
                    exp_avg = state["exp_avg"]
                    exp_avg.mul_(group["beta1"]).add_(
                        update, alpha=(1 - group["beta1"]))
                    update = exp_avg

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(
                        p_data_fp32, alpha=(-group["weight_decay"] * lr))

                p_data_fp32.add_(-update)

                if p.dtype != torch.float32:
                    # apply stochastic rounding
                    copy_stochastic(p, p_data_fp32)

        return loss