import math from typing import List import torch from toolkit.optimizers.optimizer_utils import copy_stochastic, stochastic_grad_accummulation from optimum.quanto import QBytesTensor import random class Adafactor(torch.optim.Optimizer): """ Adafactor implementation with stochastic rounding accumulation and stochastic rounding on apply. Modified from transformers Adafactor implementation to support stochastic rounding accumulation and apply. AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and `warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and `relative_step=False`. Arguments: params (`Iterable[nn.parameter.Parameter]`): Iterable of parameters to optimize or dictionaries defining parameter groups. lr (`float`, *optional*): The external learning rate. eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`): Regularization constants for square gradient and parameter scale respectively clip_threshold (`float`, *optional*, defaults to 1.0): Threshold of root mean square of final gradient update decay_rate (`float`, *optional*, defaults to -0.8): Coefficient used to compute running averages of square beta1 (`float`, *optional*): Coefficient used for computing running averages of gradient weight_decay (`float`, *optional*, defaults to 0.0): Weight decay (L2 penalty) scale_parameter (`bool`, *optional*, defaults to `True`): If True, learning rate is scaled by root mean square relative_step (`bool`, *optional*, defaults to `True`): If True, time-dependent learning rate is computed instead of external learning rate warmup_init (`bool`, *optional*, defaults to `False`): Time-dependent learning rate computation depends on whether warm-up initialization is being used This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested. Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3): - Training without LR warmup or clip_threshold is not recommended. - use scheduled LR warm-up to fixed LR - use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235) - Disable relative updates - Use scale_parameter=False - Additional optimizer operations like gradient clipping should not be used alongside Adafactor Example: ```python Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3) ``` Others reported the following combination to work well: ```python Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) ``` When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`] scheduler as following: ```python from transformers.optimization import Adafactor, AdafactorSchedule optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) lr_scheduler = AdafactorSchedule(optimizer) trainer = Trainer(..., optimizers=(optimizer, lr_scheduler)) ``` Usage: ```python # replace AdamW with Adafactor optimizer = Adafactor( model.parameters(), lr=1e-3, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, relative_step=False, scale_parameter=False, warmup_init=False, ) ```""" def __init__( self, params, lr=None, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, scale_parameter=True, relative_step=True, warmup_init=False, do_paramiter_swapping=False, paramiter_swapping_factor=0.1, stochastic_accumulation=True, ): if lr is not None and relative_step: raise ValueError( "Cannot combine manual `lr` and `relative_step=True` options") if warmup_init and not relative_step: raise ValueError( "`warmup_init=True` requires `relative_step=True`") defaults = { "lr": lr, "eps": eps, "clip_threshold": clip_threshold, "decay_rate": decay_rate, "beta1": beta1, "weight_decay": weight_decay, "scale_parameter": scale_parameter, "relative_step": relative_step, "warmup_init": warmup_init, } super().__init__(params, defaults) self.base_lrs: List[float] = [ lr for group in self.param_groups ] self.is_stochastic_rounding_accumulation = False # setup stochastic grad accum hooks if stochastic_accumulation: for group in self.param_groups: for param in group['params']: if param.requires_grad and param.dtype != torch.float32: self.is_stochastic_rounding_accumulation = True param.register_post_accumulate_grad_hook( stochastic_grad_accummulation ) self.do_paramiter_swapping = do_paramiter_swapping self.paramiter_swapping_factor = paramiter_swapping_factor self._total_paramiter_size = 0 # count total paramiters for group in self.param_groups: for param in group['params']: self._total_paramiter_size += torch.numel(param) # pretty print total paramiters with comma seperation print(f"Total training paramiters: {self._total_paramiter_size:,}") # needs to be enabled to count paramiters if self.do_paramiter_swapping: self.enable_paramiter_swapping(self.paramiter_swapping_factor) def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1): self.do_paramiter_swapping = True self.paramiter_swapping_factor = paramiter_swapping_factor # call it an initial time self.swap_paramiters() def swap_paramiters(self): all_params = [] # deactivate all paramiters for group in self.param_groups: for param in group['params']: param.requires_grad_(False) # remove any grad param.grad = None all_params.append(param) # shuffle all paramiters random.shuffle(all_params) # keep activating paramiters until we are going to go over the target paramiters target_paramiters = int(self._total_paramiter_size * self.paramiter_swapping_factor) total_paramiters = 0 for param in all_params: total_paramiters += torch.numel(param) if total_paramiters >= target_paramiters: break else: param.requires_grad_(True) @staticmethod def _get_lr(param_group, param_state): rel_step_sz = param_group["lr"] if param_group["relative_step"]: min_step = 1e-6 * \ param_state["step"] if param_group["warmup_init"] else 1e-2 rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) param_scale = 1.0 if param_group["scale_parameter"]: param_scale = max(param_group["eps"][1], param_state["RMS"]) return param_scale * rel_step_sz @staticmethod def _get_options(param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group["beta1"] is not None return factored, use_first_moment @staticmethod def _rms(tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) @staticmethod def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): # copy from fairseq's adafactor implementation: # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505 r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=- 1, keepdim=True)).rsqrt_().unsqueeze(-1) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) def step_hook(self): if not self.is_stochastic_rounding_accumulation: return # copy over stochastically rounded grads for group in self.param_groups: for param in group['params']: if param.requires_grad and hasattr(param, "_accum_grad"): param.grad = param._accum_grad del param._accum_grad # adafactor manages its own lr def get_learning_rates(self): lrs = [ self._get_lr(group, self.state[group["params"][0]]) for group in self.param_groups if group["params"][0].grad is not None ] if len(lrs) == 0: lrs = self.base_lrs # if called before stepping return lrs @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ self.step_hook() loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None or not p.requires_grad: continue grad = p.grad if grad.dtype != torch.float32: grad = grad.to(torch.float32) if grad.is_sparse: raise RuntimeError( "Adafactor does not support sparse gradients.") # if p has atts _scale then it is quantized. We need to divide the grad by the scale # if hasattr(p, "_scale"): # grad = grad / p._scale state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options( group, grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 if use_first_moment: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros( grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros( grad_shape[:-2] + grad_shape[-1:]).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) state["RMS"] = 0 else: if use_first_moment: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to( grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to( grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p if isinstance(p_data_fp32, QBytesTensor): p_data_fp32 = p_data_fp32.dequantize() if p.dtype != torch.float32: p_data_fp32 = p_data_fp32.clone().float() state["step"] += 1 state["RMS"] = self._rms(p_data_fp32) lr = self._get_lr(group, state) beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) eps = group["eps"] if isinstance(eps, tuple) or isinstance(eps, list): eps = eps[0] update = (grad**2) + eps if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_( update.mean(dim=-1), alpha=(1.0 - beta2t)) exp_avg_sq_col.mul_(beta2t).add_( update.mean(dim=-2), alpha=(1.0 - beta2t)) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad( exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) update = exp_avg_sq.rsqrt().mul_(grad) update.div_( (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) update.mul_(lr) if use_first_moment: exp_avg = state["exp_avg"] exp_avg.mul_(group["beta1"]).add_( update, alpha=(1 - group["beta1"])) update = exp_avg if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=(-group["weight_decay"] * lr)) p_data_fp32.add_(-update) if p.dtype != torch.float32: # apply stochastic rounding copy_stochastic(p, p_data_fp32) return loss