File size: 7,015 Bytes
552cd20
 
 
c0cfde6
9de5935
f391e9e
 
 
 
 
 
314c91a
f391e9e
314c91a
552cd20
f391e9e
 
 
 
e88e274
 
 
 
 
 
554b605
e88e274
552cd20
f391e9e
9de5935
 
 
554b605
 
f391e9e
9de5935
 
554b605
9de5935
554b605
f391e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b605
f391e9e
 
 
 
552cd20
314c91a
 
552cd20
314c91a
552cd20
f391e9e
 
 
e88e274
f391e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b605
f391e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
import torch
import torch.nn as nn
import re
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import requests
from bs4 import BeautifulSoup

# Set page configuration
st.set_page_config(page_title="Aplikasi Deteksi Alergen", page_icon="🍲", layout="wide")

# Target label
target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']

# Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Text cleaning
def clean_text(text):
    text = text.replace('--', ' ')
    text = re.sub(r"http\S+", "", text)
    text = re.sub('\n', ' ', text)
    text = re.sub("[^a-zA-Z0-9\s]", " ", text)
    text = re.sub(" {2,}", " ", text)
    text = text.strip().lower()
    return text

# Multilabel BERT model
class MultilabelBertClassifier(nn.Module):
    def __init__(self, model_name, num_labels):
        super(MultilabelBertClassifier, self).__init__()
        self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
        self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        return outputs.logits

# Load model
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
    model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
    try:
        state_dict = torch.load('model/alergen_model.pt', map_location=device)
        if 'model_state_dict' in state_dict:
            model_state_dict = state_dict['model_state_dict']
        else:
            model_state_dict = state_dict
        new_state_dict = {k[7:] if k.startswith('module.') else k: v for k, v in model_state_dict.items()}
        model.load_state_dict(new_state_dict, strict=False)
        st.success("Model berhasil dimuat!")
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.info("Menggunakan model tanpa pre-trained weights.")
    model.to(device)
    model.eval()
    return tokenizer, model

def predict_alergens(ingredients_text, tokenizer, model, threshold=0.5, max_length=128):
    cleaned_text = clean_text(ingredients_text)
    encoding = tokenizer.encode_plus(
        cleaned_text,
        add_special_tokens=True,
        max_length=max_length,
        truncation=True,
        return_tensors='pt',
        padding='max_length'
    )
    input_ids = encoding['input_ids'].to(device)
    attention_mask = encoding['attention_mask'].to(device)
    
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        probs = torch.sigmoid(outputs).cpu().numpy()[0]  # hasil sigmoid (0-1)

    results = []
    for i, label in enumerate(target_columns):
        present = probs[i] > threshold
        percent = float(probs[i]) * 100
        results.append({
            'label': label,
            'present': present,
            'probability': percent
        })
    return results

# Scrape Cookpad
def scrape_ingredients_from_url(url):
    try:
        headers = {"User-Agent": "Mozilla/5.0"}
        response = requests.get(url, headers=headers)
        soup = BeautifulSoup(response.text, 'html.parser')
        ingredients_div = soup.find('div', id='ingredients')
        if not ingredients_div:
            return None
        items = ingredients_div.find_all(['li', 'span'])
        ingredients = [item.get_text(strip=True) for item in items if item.get_text(strip=True)]
        return '\n'.join(ingredients)
    except Exception as e:
        st.error(f"Gagal mengambil data dari URL: {e}")
        return None

# Main App
def main():
    st.title("Aplikasi Deteksi Alergen dalam Resep")
    st.markdown("""
    Aplikasi ini memprediksi alergen yang terkandung dalam resep makanan berdasarkan bahan-bahan.
    """)
    
    with st.spinner("Memuat model..."):
        tokenizer, model = load_model()

    col1, col2 = st.columns([3, 2])
    
    with col1:
        st.subheader("Masukkan URL Resep dari Cookpad")
        url = st.text_input("Contoh: https://cookpad.com/id/resep/24678703-gulai-telur-tahu-dan-kacang-panjang")

        threshold = st.slider(
            "Atur Threshold Deteksi Alergen",
            min_value=0.1,
            max_value=0.9,
            value=0.5,
            step=0.05,
            help="Semakin rendah threshold, semakin sensitif model terhadap kemungkinan adanya alergen."
        )

        if st.button("Deteksi Alergen", type="primary"):
            if url:
                with st.spinner("Mengambil bahan resep dari URL..."):
                    ingredients = scrape_ingredients_from_url(url)
                
                if ingredients:
                    st.text_area("Daftar Bahan", ingredients, height=200)
                    with st.spinner("Menganalisis bahan..."):
                        alergens = predict_alergens(ingredients, tokenizer, model, threshold=threshold)
                    
                    with col2:
                        st.subheader("Hasil Deteksi")
                        emoji_map = {
                            'susu': 'πŸ₯›',
                            'kacang': 'πŸ₯œ',
                            'telur': 'πŸ₯š',
                            'makanan_laut': '🦐',
                            'gandum': '🌾'
                        }

                        detected = []
                        for result in alergens:
                            label = result['label']
                            name = label.replace('_', ' ').title()
                            prob = result['probability']
                            present = result['present']
                            emoji = emoji_map.get(label, '')
                            
                            if present:
                                st.error(f"{emoji} {name}: Terdeteksi ⚠️ ({prob:.2f}%)")
                                detected.append(name)
                            else:
                                st.success(f"{emoji} {name}: Tidak Terdeteksi βœ“ ({prob:.2f}%)")

                        if detected:
                            st.warning(f"Resep ini mengandung alergen: {', '.join(detected)}")
                        else:
                            st.success("Resep ini tidak mengandung alergen yang terdeteksi.")
                else:
                    st.warning("Gagal mengambil bahan dari halaman Cookpad. Pastikan URL valid.")
            else:
                st.warning("Silakan masukkan URL resep terlebih dahulu.")

    with st.expander("Tentang Aplikasi"):
        st.markdown("""
        Aplikasi ini menggunakan model IndoBERT untuk deteksi 5 jenis alergen dari bahan resep:
        - Susu πŸ₯›
        - Kacang πŸ₯œ
        - Telur πŸ₯š
        - Makanan Laut 🦐
        - Gandum 🌾
        """)

if __name__ == "__main__":
    main()