Spaces:
Running
Running
rdsarjito
commited on
Commit
·
552cd20
1
Parent(s):
87227dc
1 commit
Browse files- app.py +264 -0
- model/alergen_model.pt +3 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# Set page config
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Deteksi Alergen dalam Resep",
|
17 |
+
page_icon="🍲",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Set device
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
|
24 |
+
# Clean text function
|
25 |
+
def clean_text(text):
|
26 |
+
# Convert dashes to spaces for better tokenization
|
27 |
+
text = text.replace('--', ' ')
|
28 |
+
# Basic cleaning
|
29 |
+
text = re.sub(r"http\S+", "", text)
|
30 |
+
text = re.sub('\n', ' ', text)
|
31 |
+
text = re.sub("[^a-zA-Z0-9\s]", " ", text)
|
32 |
+
text = re.sub(" {2,}", " ", text)
|
33 |
+
text = text.strip()
|
34 |
+
text = text.lower()
|
35 |
+
return text
|
36 |
+
|
37 |
+
# Define model for multilabel classification
|
38 |
+
class MultilabelBertClassifier(nn.Module):
|
39 |
+
def __init__(self, model_name, num_labels):
|
40 |
+
super(MultilabelBertClassifier, self).__init__()
|
41 |
+
self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
|
42 |
+
# Replace the classification head with our own for multilabel
|
43 |
+
self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
44 |
+
|
45 |
+
def forward(self, input_ids, attention_mask):
|
46 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
47 |
+
return outputs.logits
|
48 |
+
|
49 |
+
# Function to predict allergens in new recipes
|
50 |
+
@st.cache_resource
|
51 |
+
def load_model():
|
52 |
+
# Target columns
|
53 |
+
target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
|
54 |
+
|
55 |
+
# Initialize tokenizer
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
|
57 |
+
|
58 |
+
# Initialize model
|
59 |
+
model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
|
60 |
+
|
61 |
+
# Load model weights if available
|
62 |
+
model_path = "model/alergen_model.pt"
|
63 |
+
|
64 |
+
try:
|
65 |
+
# Try to load the model
|
66 |
+
checkpoint = torch.load(model_path, map_location=device)
|
67 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
68 |
+
st.success("Model berhasil dimuat!")
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Error loading model: {str(e)}")
|
71 |
+
st.warning("Model belum tersedia. Silakan latih model terlebih dahulu atau upload file model.")
|
72 |
+
|
73 |
+
model.to(device)
|
74 |
+
model.eval()
|
75 |
+
|
76 |
+
return model, tokenizer, target_columns
|
77 |
+
|
78 |
+
def predict_allergens(ingredients_text, model, tokenizer, target_columns, max_length=128):
|
79 |
+
# Clean the text
|
80 |
+
cleaned_text = clean_text(ingredients_text)
|
81 |
+
|
82 |
+
# Tokenize
|
83 |
+
encoding = tokenizer.encode_plus(
|
84 |
+
cleaned_text,
|
85 |
+
add_special_tokens=True,
|
86 |
+
max_length=max_length,
|
87 |
+
truncation=True,
|
88 |
+
return_tensors='pt',
|
89 |
+
padding='max_length'
|
90 |
+
)
|
91 |
+
|
92 |
+
input_ids = encoding['input_ids'].to(device)
|
93 |
+
attention_mask = encoding['attention_mask'].to(device)
|
94 |
+
|
95 |
+
with torch.no_grad():
|
96 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
97 |
+
predictions = torch.sigmoid(outputs)
|
98 |
+
predictions_prob = predictions.cpu().numpy()[0]
|
99 |
+
predictions_binary = (predictions > 0.5).float().cpu().numpy()[0]
|
100 |
+
|
101 |
+
result = {}
|
102 |
+
for i, target in enumerate(target_columns):
|
103 |
+
result[target] = {
|
104 |
+
'present': bool(predictions_binary[i]),
|
105 |
+
'probability': float(predictions_prob[i])
|
106 |
+
}
|
107 |
+
|
108 |
+
return result
|
109 |
+
|
110 |
+
# Main application
|
111 |
+
def main():
|
112 |
+
st.title("Deteksi Alergen dalam Resep")
|
113 |
+
st.markdown("""
|
114 |
+
Aplikasi ini menggunakan model IndoBERT untuk mendeteksi kemungkinan alergen dalam resep berdasarkan daftar bahan.
|
115 |
+
Alergen yang diidentifikasi meliputi:
|
116 |
+
- Susu
|
117 |
+
- Kacang
|
118 |
+
- Telur
|
119 |
+
- Makanan Laut
|
120 |
+
- Gandum
|
121 |
+
""")
|
122 |
+
|
123 |
+
# Sidebar for model upload
|
124 |
+
st.sidebar.header("Upload Model")
|
125 |
+
uploaded_model = st.sidebar.file_uploader("Upload model allergen (alergen_model.pt)", type=["pt"])
|
126 |
+
|
127 |
+
if uploaded_model is not None:
|
128 |
+
with open("alergen_model.pt", "wb") as f:
|
129 |
+
f.write(uploaded_model.getbuffer())
|
130 |
+
st.sidebar.success("Model telah diupload dan dimuat!")
|
131 |
+
|
132 |
+
# Load model
|
133 |
+
model, tokenizer, target_columns = load_model()
|
134 |
+
|
135 |
+
# Input area
|
136 |
+
st.header("Masukkan Daftar Bahan Resep")
|
137 |
+
ingredients = st.text_area("Bahan-bahan:", height=200,
|
138 |
+
placeholder="Contoh: 1 bungkus Lontong homemade, 2 butir Telur ayam, 2 kotak kecil Tahu coklat...")
|
139 |
+
|
140 |
+
col1, col2 = st.columns(2)
|
141 |
+
|
142 |
+
with col1:
|
143 |
+
if st.button("Deteksi Alergen", type="primary"):
|
144 |
+
if ingredients:
|
145 |
+
with st.spinner("Menganalisis bahan-bahan..."):
|
146 |
+
# Clean text for display
|
147 |
+
cleaned_text = clean_text(ingredients)
|
148 |
+
st.markdown("### Bahan yang diproses:")
|
149 |
+
st.text(cleaned_text)
|
150 |
+
|
151 |
+
# Get predictions
|
152 |
+
results = predict_allergens(ingredients, model, tokenizer, target_columns)
|
153 |
+
|
154 |
+
# Display results
|
155 |
+
st.markdown("### Hasil Deteksi Alergen:")
|
156 |
+
|
157 |
+
# Create data for visualization
|
158 |
+
allergens = list(results.keys())
|
159 |
+
probabilities = [results[a]['probability'] for a in allergens]
|
160 |
+
present = [results[a]['present'] for a in allergens]
|
161 |
+
|
162 |
+
# Create a colorful table of results
|
163 |
+
result_df = pd.DataFrame({
|
164 |
+
'Alergen': [a.title() for a in allergens],
|
165 |
+
'Terdeteksi': ['✅' if results[a]['present'] else '❌' for a in allergens],
|
166 |
+
'Probabilitas': [f"{results[a]['probability']*100:.2f}%" for a in allergens]
|
167 |
+
})
|
168 |
+
|
169 |
+
st.dataframe(result_df, use_container_width=True)
|
170 |
+
|
171 |
+
# Display chart in the second column
|
172 |
+
with col2:
|
173 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
174 |
+
bars = ax.bar(
|
175 |
+
[a.title() for a in allergens],
|
176 |
+
probabilities,
|
177 |
+
color=['red' if p else 'green' for p in present]
|
178 |
+
)
|
179 |
+
|
180 |
+
# Add threshold line
|
181 |
+
ax.axhline(y=0.5, color='black', linestyle='--', alpha=0.7)
|
182 |
+
ax.text(len(allergens)-1, 0.51, 'Threshold (0.5)', ha='right', va='bottom')
|
183 |
+
|
184 |
+
# Customize the chart
|
185 |
+
ax.set_ylim(0, 1)
|
186 |
+
ax.set_ylabel('Probabilitas')
|
187 |
+
ax.set_title('Probabilitas Deteksi Alergen')
|
188 |
+
|
189 |
+
# Add values on top of bars
|
190 |
+
for bar in bars:
|
191 |
+
height = bar.get_height()
|
192 |
+
ax.annotate(f'{height:.2f}',
|
193 |
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
194 |
+
xytext=(0, 3), # 3 points vertical offset
|
195 |
+
textcoords="offset points",
|
196 |
+
ha='center', va='bottom')
|
197 |
+
|
198 |
+
st.pyplot(fig)
|
199 |
+
|
200 |
+
# Show detailed explanation
|
201 |
+
st.markdown("### Penjelasan Hasil:")
|
202 |
+
detected_allergens = [allergen.title() for allergen, data in results.items() if data['present']]
|
203 |
+
|
204 |
+
if detected_allergens:
|
205 |
+
st.markdown(f"Resep ini kemungkinan mengandung alergen: **{', '.join(detected_allergens)}**")
|
206 |
+
|
207 |
+
# Provide specific explanation for each detected allergen
|
208 |
+
for allergen in detected_allergens:
|
209 |
+
if allergen.lower() == 'susu':
|
210 |
+
st.markdown("- **Susu**: Resep mungkin mengandung susu atau produk turunannya")
|
211 |
+
elif allergen.lower() == 'kacang':
|
212 |
+
st.markdown("- **Kacang**: Resep mungkin mengandung kacang atau produk turunannya")
|
213 |
+
elif allergen.lower() == 'telur':
|
214 |
+
st.markdown("- **Telur**: Resep mungkin mengandung telur atau produk turunannya")
|
215 |
+
elif allergen.lower() == 'makanan_laut':
|
216 |
+
st.markdown("- **Makanan Laut**: Resep mungkin mengandung ikan, udang, kerang, atau makanan laut lainnya")
|
217 |
+
elif allergen.lower() == 'gandum':
|
218 |
+
st.markdown("- **Gandum**: Resep mungkin mengandung gandum atau produk turunannya (termasuk gluten)")
|
219 |
+
else:
|
220 |
+
st.markdown("Tidak terdeteksi alergen umum dalam resep ini.")
|
221 |
+
|
222 |
+
st.warning("Catatan: Prediksi ini hanya bersifat indikatif. Selalu verifikasi dengan informasi resmi untuk keamanan konsumsi.")
|
223 |
+
else:
|
224 |
+
st.error("Mohon masukkan daftar bahan terlebih dahulu.")
|
225 |
+
|
226 |
+
# Examples section
|
227 |
+
with st.expander("Contoh Resep"):
|
228 |
+
st.markdown("""
|
229 |
+
### Contoh Resep 1 (Mengandung Beberapa Alergen)
|
230 |
+
```
|
231 |
+
1 bungkus Lontong homemade, 2 butir Telur ayam, 2 kotak kecil Tahu coklat, 4 butir kecil Kentang, 2 buah Tomat merah, 1 buah Ketimun lalap, 4 lembar Selada keriting, 2 lembar Kol putih, 2 porsi Saus kacang homemade, 4 buah Kerupuk udang goreng, Secukupnya emping goreng, 2 sdt Bawang goreng, Secukupnya Kecap manis
|
232 |
+
```
|
233 |
+
|
234 |
+
### Contoh Resep 2 (Mengandung Susu)
|
235 |
+
```
|
236 |
+
250 ml susu full cream, 2 sdm tepung maizena, 3 sdm gula pasir, 1/2 sdt vanila ekstrak, secukupnya keju cheddar parut
|
237 |
+
```
|
238 |
+
|
239 |
+
### Contoh Resep 3 (Mengandung Makanan Laut)
|
240 |
+
```
|
241 |
+
250 g udang segar, 150 g cumi-cumi, 2 sdm saus tiram, 3 siung bawang putih, 1 ruas jahe, 2 sdm minyak goreng, garam dan merica secukupnya
|
242 |
+
```
|
243 |
+
""")
|
244 |
+
|
245 |
+
# About section
|
246 |
+
st.sidebar.markdown("---")
|
247 |
+
st.sidebar.header("Tentang")
|
248 |
+
st.sidebar.info("""
|
249 |
+
Aplikasi ini menggunakan model deep learning berbasis IndoBERT untuk mendeteksi alergen dalam resep makanan.
|
250 |
+
|
251 |
+
Model ini dilatih untuk mengidentifikasi 5 jenis alergen umum dalam makanan berdasarkan daftar bahan resep.
|
252 |
+
""")
|
253 |
+
|
254 |
+
# Model information
|
255 |
+
st.sidebar.markdown("---")
|
256 |
+
st.sidebar.header("Informasi Model")
|
257 |
+
st.sidebar.markdown("""
|
258 |
+
- **Model Dasar**: IndoBERT
|
259 |
+
- **Jenis**: Multilabel Classification
|
260 |
+
- **Alergen yang Dideteksi**: Susu, Kacang, Telur, Makanan Laut, Gandum
|
261 |
+
""")
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
main()
|
model/alergen_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28df831b272894c11265ef5f4cf1ac2a2ca89e765b26bff928f34c388ff015d5
|
3 |
+
size 497868974
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.27.0
|
2 |
+
torch>=2.0.0
|
3 |
+
transformers>=4.35.0
|
4 |
+
pandas>=2.0.0
|
5 |
+
numpy>=1.24.0
|
6 |
+
matplotlib>=3.7.0
|
7 |
+
scikit-learn>=1.3.0
|
8 |
+
regex>=20
|