rdsarjito commited on
Commit
314c91a
·
1 Parent(s): e88e274
Files changed (3) hide show
  1. app.py +204 -40
  2. model_loader.py +58 -0
  3. requirements.txt +9 -9
app.py CHANGED
@@ -1,38 +1,84 @@
1
  import streamlit as st
2
  import torch
3
  import torch.nn as nn
4
- import numpy as np
5
- import pandas as pd
6
  import re
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- # Load tokenizer dan model
10
- MODEL_PATH = 'model/alergen_model.pt'
11
- MODEL_NAME = 'indobenchmark/indobert-base-p1'
12
- TARGET_COLUMNS = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
13
- MAX_LEN = 128
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
 
16
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
 
 
 
 
 
 
 
 
17
 
 
18
  class MultilabelBertClassifier(nn.Module):
19
  def __init__(self, model_name, num_labels):
20
  super(MultilabelBertClassifier, self).__init__()
21
  self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
 
22
  self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
23
 
24
  def forward(self, input_ids, attention_mask):
25
  outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
26
  return outputs.logits
27
 
28
- model = MultilabelBertClassifier(MODEL_NAME, len(TARGET_COLUMNS))
29
- model.load_state_dict(torch.load(MODEL_PATH, map_location=device))
30
- model.to(device)
31
- model.eval()
32
-
33
- # Fungsi preprocessing
34
  def clean_text(text):
 
35
  text = text.replace('--', ' ')
 
36
  text = re.sub(r"http\S+", "", text)
37
  text = re.sub('\n', ' ', text)
38
  text = re.sub("[^a-zA-Z0-9\s]", " ", text)
@@ -41,38 +87,156 @@ def clean_text(text):
41
  text = text.lower()
42
  return text
43
 
44
- # Fungsi prediksi
45
- def predict(text):
46
- cleaned = clean_text(text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  encoding = tokenizer.encode_plus(
48
- cleaned,
49
  add_special_tokens=True,
50
- max_length=MAX_LEN,
 
51
  return_tensors='pt',
52
- padding='max_length',
53
- truncation=True
54
  )
 
55
  input_ids = encoding['input_ids'].to(device)
56
  attention_mask = encoding['attention_mask'].to(device)
57
-
58
  with torch.no_grad():
59
- logits = model(input_ids=input_ids, attention_mask=attention_mask)
60
- probs = torch.sigmoid(logits).cpu().numpy().flatten()
61
- results = {TARGET_COLUMNS[i]: float(probs[i]) for i in range(len(TARGET_COLUMNS))}
62
- return results
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- # STREAMLIT UI
65
- st.title("🔍 Deteksi Alergen dari Bahan Makanan")
66
- st.markdown("Masukkan daftar bahan makanan, dan sistem akan memprediksi kemungkinan alergen.")
67
-
68
- user_input = st.text_area("🧾 Bahan makanan (contoh: 2 butir telur, 1 gelas susu, kacang tanah...)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
- if st.button("Prediksi Alergen"):
71
- if user_input.strip() == "":
72
- st.warning("Silakan masukkan bahan makanan terlebih dahulu.")
73
- else:
74
- with st.spinner("Memproses..."):
75
- predictions = predict(user_input)
76
- st.subheader("📊 Hasil Prediksi:")
77
- for allergen, score in predictions.items():
78
- st.write(f"- **{allergen}**: {'✅ Terdeteksi' if score > 0.5 else '❌ Tidak terdeteksi'} (Probabilitas: {score:.2f})")
 
1
  import streamlit as st
2
  import torch
3
  import torch.nn as nn
 
 
4
  import re
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
+ import numpy as np
7
+ import os
8
+
9
+ # Set page configuration
10
+ st.set_page_config(
11
+ page_title="Allergen Detector",
12
+ page_icon="🍽️",
13
+ layout="wide"
14
+ )
15
+
16
+ # Define styling
17
+ st.markdown("""
18
+ <style>
19
+ .main-header {
20
+ font-size: 2.5rem;
21
+ color: #1E88E5;
22
+ text-align: center;
23
+ }
24
+ .sub-header {
25
+ font-size: 1.5rem;
26
+ color: #424242;
27
+ margin-bottom: 1rem;
28
+ }
29
+ .result-positive {
30
+ font-size: 1.2rem;
31
+ color: #D32F2F;
32
+ font-weight: bold;
33
+ }
34
+ .result-negative {
35
+ font-size: 1.2rem;
36
+ color: #388E3C;
37
+ font-weight: bold;
38
+ }
39
+ .footer {
40
+ text-align: center;
41
+ color: #616161;
42
+ margin-top: 2rem;
43
+ }
44
+ </style>
45
+ """, unsafe_allow_html=True)
46
+
47
+ # App title and description
48
+ st.markdown("<h1 class='main-header'>Allergen Detector</h1>", unsafe_allow_html=True)
49
+ st.markdown("<p class='sub-header'>Detect common allergens in your recipe ingredients</p>", unsafe_allow_html=True)
50
 
51
+ # Set device
 
 
 
 
52
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
53
 
54
+ # Target columns (allergen types)
55
+ target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
56
+ allergen_display_names = {
57
+ 'susu': 'Milk (Susu)',
58
+ 'kacang': 'Nuts (Kacang)',
59
+ 'telur': 'Eggs (Telur)',
60
+ 'makanan_laut': 'Seafood (Makanan Laut)',
61
+ 'gandum': 'Wheat (Gandum)'
62
+ }
63
 
64
+ # Define model for multilabel classification
65
  class MultilabelBertClassifier(nn.Module):
66
  def __init__(self, model_name, num_labels):
67
  super(MultilabelBertClassifier, self).__init__()
68
  self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
69
+ # Replace the classification head with our own for multilabel
70
  self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
71
 
72
  def forward(self, input_ids, attention_mask):
73
  outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
74
  return outputs.logits
75
 
76
+ # Clean text function
77
+ @st.cache_data
 
 
 
 
78
  def clean_text(text):
79
+ # Convert dashes to spaces for better tokenization
80
  text = text.replace('--', ' ')
81
+ # Basic cleaning
82
  text = re.sub(r"http\S+", "", text)
83
  text = re.sub('\n', ' ', text)
84
  text = re.sub("[^a-zA-Z0-9\s]", " ", text)
 
87
  text = text.lower()
88
  return text
89
 
90
+ # Function to load model
91
+ @st.cache_resource
92
+ def load_model():
93
+ try:
94
+ # Initialize tokenizer
95
+ tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
96
+
97
+ # Initialize model
98
+ model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
99
+
100
+ # Load the trained model
101
+ # In a real deployment, you would use the saved model file
102
+ # For demo purposes, we'll assume the model file is in the same directory
103
+ model_path = "model/alergen_model.pt"
104
+
105
+ if os.path.exists(model_path):
106
+ checkpoint = torch.load(model_path, map_location=device)
107
+ model.load_state_dict(checkpoint['model_state_dict'])
108
+ else:
109
+ st.error("Model file not found. Please make sure 'alergen_model.pt' is in the same directory.")
110
+
111
+ model.to(device)
112
+ model.eval()
113
+
114
+ return model, tokenizer
115
+ except Exception as e:
116
+ st.error(f"Error loading model: {str(e)}")
117
+ return None, None
118
+
119
+ # Function to predict allergens
120
+ def predict_allergens(model, tokenizer, ingredients_text, max_length=128):
121
+ if not model or not tokenizer:
122
+ return {}
123
+
124
+ # Clean the text
125
+ cleaned_text = clean_text(ingredients_text)
126
+
127
+ # Tokenize
128
  encoding = tokenizer.encode_plus(
129
+ cleaned_text,
130
  add_special_tokens=True,
131
+ max_length=max_length,
132
+ truncation=True,
133
  return_tensors='pt',
134
+ padding='max_length'
 
135
  )
136
+
137
  input_ids = encoding['input_ids'].to(device)
138
  attention_mask = encoding['attention_mask'].to(device)
139
+
140
  with torch.no_grad():
141
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask)
142
+ predictions = torch.sigmoid(outputs)
143
+ probabilities = predictions.cpu().numpy()[0]
144
+ binary_predictions = (probabilities > 0.5).astype(bool)
145
+
146
+ result = {
147
+ 'binary': {},
148
+ 'probabilities': {}
149
+ }
150
+
151
+ for i, target in enumerate(target_columns):
152
+ result['binary'][target] = bool(binary_predictions[i])
153
+ result['probabilities'][target] = float(probabilities[i])
154
+
155
+ return result
156
 
157
+ # Main app
158
+ def main():
159
+ # Load model and tokenizer
160
+ model, tokenizer = load_model()
161
+
162
+ # Input area
163
+ st.markdown("### Enter Recipe Ingredients")
164
+ ingredients = st.text_area(
165
+ "Paste your recipe ingredients here:",
166
+ height=200,
167
+ placeholder="Example: 1 bungkus Lontong homemade, 2 butir Telur ayam, 2 kotak kecil Tahu coklat..."
168
+ )
169
+
170
+ # Sample recipe option
171
+ use_sample = st.checkbox("Use sample recipe")
172
+
173
+ if use_sample:
174
+ sample_recipe = "1 bungkus Lontong homemade 2 butir Telur ayam 2 kotak kecil Tahu coklat 4 butir kecil Kentang 2 buah Tomat merah 1 buah Ketimun lalap 4 lembar Selada keriting 2 lembar Kol putih 2 porsi Saus kacang homemade 4 buah Kerupuk udang goreng Secukupnya emping goreng 2 sdt Bawang goreng Secukupnya Kecap manis (bila suka)"
175
+ ingredients = sample_recipe
176
+ st.text_area("Sample recipe:", value=sample_recipe, height=150, disabled=True)
177
+
178
+ # Analyze button
179
+ analyze_button = st.button("Analyze Ingredients")
180
+
181
+ # Results section
182
+ if analyze_button and ingredients:
183
+ with st.spinner("Analyzing ingredients..."):
184
+ # Make prediction
185
+ results = predict_allergens(model, tokenizer, ingredients)
186
+
187
+ if results:
188
+ st.markdown("### Analysis Results")
189
+
190
+ # Display results in columns
191
+ col1, col2 = st.columns(2)
192
+
193
+ with col1:
194
+ st.markdown("#### Detected Allergens:")
195
+
196
+ # Check if any allergens were detected
197
+ if any(results['binary'].values()):
198
+ for allergen, present in results['binary'].items():
199
+ if present:
200
+ st.markdown(f"<p class='result-positive'>✓ {allergen_display_names[allergen]}</p>", unsafe_allow_html=True)
201
+ else:
202
+ st.markdown("<p class='result-negative'>No allergens detected</p>", unsafe_allow_html=True)
203
+
204
+ with col2:
205
+ st.markdown("#### Confidence Scores:")
206
+ for allergen, probability in results['probabilities'].items():
207
+ # Create a progress bar for each allergen
208
+ st.write(f"{allergen_display_names[allergen]}")
209
+ st.progress(probability)
210
+ st.write(f"{probability:.2%}")
211
+ st.write("")
212
+
213
+ # Display a summary
214
+ st.markdown("### Summary")
215
+ detected = [allergen_display_names[a] for a, p in results['binary'].items() if p]
216
+ if detected:
217
+ st.warning(f"This recipe contains the following allergens: {', '.join(detected)}")
218
+ else:
219
+ st.success("This recipe appears to be free from the common allergens we can detect.")
220
+
221
+ st.info("Note: This analysis is based on an AI model and may not be 100% accurate. Always verify allergen information from trusted sources if you have dietary restrictions.")
222
+
223
+ # Information section
224
+ with st.expander("About This App"):
225
+ st.write("""
226
+ This allergen detector uses a fine-tuned IndoBERT model to identify common allergens in recipe ingredients.
227
+
228
+ The model can detect the following allergens:
229
+ - Milk (Susu)
230
+ - Nuts (Kacang)
231
+ - Eggs (Telur)
232
+ - Seafood (Makanan Laut)
233
+ - Wheat (Gandum)
234
+
235
+ The accuracy of detection depends on how clearly the ingredients are described. The model has been trained on Indonesian recipe data.
236
+ """)
237
+
238
+ # Footer
239
+ st.markdown("<p class='footer'>Developed with ❤️ using Streamlit and PyTorch</p>", unsafe_allow_html=True)
240
 
241
+ if __name__ == "__main__":
242
+ main()
 
 
 
 
 
 
 
model_loader.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import AutoModelForSequenceClassification
4
+
5
+ # Define target columns
6
+ target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
7
+
8
+ # Define model class - same as in your original code
9
+ class MultilabelBertClassifier(nn.Module):
10
+ def __init__(self, model_name, num_labels):
11
+ super(MultilabelBertClassifier, self).__init__()
12
+ self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
13
+ # Replace the classification head with our own for multilabel
14
+ self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
15
+
16
+ def forward(self, input_ids, attention_mask):
17
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
18
+ return outputs.logits
19
+
20
+ # Function to load the saved model
21
+ def load_saved_model(model_path, device='cpu'):
22
+ """
23
+ Load the saved allergen detection model
24
+
25
+ Args:
26
+ model_path (str): Path to the saved model file
27
+ device (str): Device to load the model onto ('cpu' or 'cuda')
28
+
29
+ Returns:
30
+ model: The loaded model
31
+ """
32
+ try:
33
+ # Create model instance
34
+ model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
35
+
36
+ # Load saved weights
37
+ checkpoint = torch.load(model_path, map_location=device)
38
+
39
+ # Check if model was saved using DataParallel
40
+ if 'module.' in list(checkpoint['model_state_dict'].keys())[0]:
41
+ # Create new OrderedDict without 'module.' prefix
42
+ from collections import OrderedDict
43
+ new_state_dict = OrderedDict()
44
+ for k, v in checkpoint['model_state_dict'].items():
45
+ name = k[7:] if k.startswith('module.') else k
46
+ new_state_dict[name] = v
47
+ model.load_state_dict(new_state_dict)
48
+ else:
49
+ model.load_state_dict(checkpoint['model_state_dict'])
50
+
51
+ # Move model to device and set to evaluation mode
52
+ model.to(device)
53
+ model.eval()
54
+
55
+ return model
56
+ except Exception as e:
57
+ print(f"Error loading model: {str(e)}")
58
+ return None
requirements.txt CHANGED
@@ -1,9 +1,9 @@
1
- streamlit
2
- pandas
3
- numpy
4
- torch
5
- transformers
6
- scikit-learn
7
- tqdm
8
- matplotlib
9
- sentencepiece
 
1
+ streamlit==1.30.0
2
+ torch==2.0.1
3
+ transformers==4.35.2
4
+ numpy==1.24.3
5
+ pandas==2.0.3
6
+ scikit-learn==1.3.0
7
+ regex==2023.8.8
8
+ tqdm==4.66.1
9
+ matplotlib==3.7.2