Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from diffusers import StableDiffusionPipeline | |
# Load model manually from Hugging Face model hub or your uploaded files | |
model_path = "sarthak247/Wan2.1-T2V-1.3B-nf4" # Replace with your model path | |
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
pipe.to("cuda") # If running on GPU | |
def generate_video(prompt): | |
""" | |
Generates a video from the provided prompt using the pre-loaded model. | |
""" | |
try: | |
# Generate video using the model pipeline | |
video = pipe(prompt).videos[0] # Assuming output is a video tensor | |
# Return the generated video | |
return video | |
except Exception as e: | |
print(f"Error during video generation: {e}") | |
return "Error generating video" | |
# Gradio UI for video generation | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=gr.Textbox(label="Enter Text Prompt"), | |
outputs=gr.Video(label="Generated Video"), | |
title="Text-to-Video Generation with Wan2.1-T2V", | |
description="This app generates a video based on the text prompt using the Wan2.1-T2V model." | |
) | |
# Launch the Gradio app | |
iface.launch() | |