Spaces:
Runtime error
Runtime error
try anbiter way
Browse files
app.py
CHANGED
@@ -1,82 +1,35 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import os
|
5 |
-
import requests
|
6 |
-
from safetensors.torch import load_file
|
7 |
-
from torchvision import transforms
|
8 |
-
from PIL import Image
|
9 |
-
import numpy as np
|
10 |
-
import random
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
-
# Function to download model if not present
|
17 |
-
def download_model():
|
18 |
-
if not os.path.exists(MODEL_FILE):
|
19 |
-
print("Downloading model...")
|
20 |
-
response = requests.get(MODEL_URL, stream=True)
|
21 |
-
if response.status_code == 200:
|
22 |
-
with open(MODEL_FILE, "wb") as f:
|
23 |
-
for chunk in response.iter_content(chunk_size=8192):
|
24 |
-
f.write(chunk)
|
25 |
-
print("Download complete!")
|
26 |
-
else:
|
27 |
-
raise RuntimeError(f"Failed to download model: {response.status_code}")
|
28 |
-
|
29 |
-
# Load model weights manually
|
30 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
-
print(f"Loading model on {device}...")
|
32 |
-
|
33 |
-
try:
|
34 |
-
download_model()
|
35 |
-
model_weights = load_file(MODEL_FILE, device=device)
|
36 |
-
print("Model loaded successfully!")
|
37 |
-
except Exception as e:
|
38 |
-
print(f"Error loading model: {e}")
|
39 |
-
model_weights = None
|
40 |
-
|
41 |
-
# Function to generate video using the model
|
42 |
def generate_video(prompt):
|
43 |
"""
|
44 |
-
Generates a video
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
random.randint(0, 255))) # Random color
|
59 |
-
|
60 |
-
# Transform the image to a tensor and convert it to a numpy array
|
61 |
-
transform = transforms.ToTensor()
|
62 |
-
frame = (transform(img).permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
63 |
-
|
64 |
-
# Create a fake video with repeated frames (replace with actual frame generation)
|
65 |
-
frames = [frame] * 16 # 16 repeated frames (replace with actual video frames from the model)
|
66 |
-
output_path = "output.mp4"
|
67 |
-
|
68 |
-
# Save frames as a video with 8 fps
|
69 |
-
imageio.mimsave(output_path, frames, fps=8)
|
70 |
-
|
71 |
-
return output_path
|
72 |
-
|
73 |
-
# Gradio UI
|
74 |
iface = gr.Interface(
|
75 |
fn=generate_video,
|
76 |
inputs=gr.Textbox(label="Enter Text Prompt"),
|
77 |
outputs=gr.Video(label="Generated Video"),
|
78 |
-
title="Wan2.1-T2V
|
79 |
-
description="This app
|
80 |
)
|
81 |
|
|
|
82 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load model manually from Hugging Face model hub or your uploaded files
|
6 |
+
model_path = "sarthak247/Wan2.1-T2V-1.3B-nf4" # Replace with your model path
|
7 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
8 |
+
pipe.to("cuda") # If running on GPU
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def generate_video(prompt):
|
11 |
"""
|
12 |
+
Generates a video from the provided prompt using the pre-loaded model.
|
13 |
"""
|
14 |
+
try:
|
15 |
+
# Generate video using the model pipeline
|
16 |
+
video = pipe(prompt).videos[0] # Assuming output is a video tensor
|
17 |
+
|
18 |
+
# Return the generated video
|
19 |
+
return video
|
20 |
+
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error during video generation: {e}")
|
23 |
+
return "Error generating video"
|
24 |
+
|
25 |
+
# Gradio UI for video generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
iface = gr.Interface(
|
27 |
fn=generate_video,
|
28 |
inputs=gr.Textbox(label="Enter Text Prompt"),
|
29 |
outputs=gr.Video(label="Generated Video"),
|
30 |
+
title="Text-to-Video Generation with Wan2.1-T2V",
|
31 |
+
description="This app generates a video based on the text prompt using the Wan2.1-T2V model."
|
32 |
)
|
33 |
|
34 |
+
# Launch the Gradio app
|
35 |
iface.launch()
|