import torch import gradio as gr from diffusers import StableDiffusionPipeline # Load model manually from Hugging Face model hub or your uploaded files model_path = "sarthak247/Wan2.1-T2V-1.3B-nf4" # Replace with your model path pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to("cuda") # If running on GPU def generate_video(prompt): """ Generates a video from the provided prompt using the pre-loaded model. """ try: # Generate video using the model pipeline video = pipe(prompt).videos[0] # Assuming output is a video tensor # Return the generated video return video except Exception as e: print(f"Error during video generation: {e}") return "Error generating video" # Gradio UI for video generation iface = gr.Interface( fn=generate_video, inputs=gr.Textbox(label="Enter Text Prompt"), outputs=gr.Video(label="Generated Video"), title="Text-to-Video Generation with Wan2.1-T2V", description="This app generates a video based on the text prompt using the Wan2.1-T2V model." ) # Launch the Gradio app iface.launch()