|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from sentence_transformers import SentenceTransformer |
|
import numpy as np |
|
import faiss |
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("pubmed_qa", "pqa_labeled") |
|
corpus = [entry['context'] for entry in dataset['train']] |
|
|
|
|
|
embed_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb') |
|
corpus_embeddings = embed_model.encode(corpus, show_progress_bar=True) |
|
|
|
|
|
index = faiss.IndexFlatL2(len(corpus_embeddings[0])) |
|
index.add(np.array(corpus_embeddings)) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large") |
|
|
|
|
|
def generate_answer(query, index, embeddings, corpus, embed_model): |
|
query_embedding = embed_model.encode([query]) |
|
D, I = index.search(np.array(query_embedding), k=5) |
|
retrieved = [corpus[i] for i in I[0]] |
|
prompt = f"Context: {retrieved}\n\nQuestion: {query}\n\nAnswer:" |
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True) |
|
outputs = model.generate(**inputs, max_new_tokens=128) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|