File size: 1,257 Bytes
bc01fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
from datasets import load_dataset

# Load Dataset
dataset = load_dataset("pubmed_qa", "pqa_labeled")
corpus = [entry['context'] for entry in dataset['train']]

# Embedding model
embed_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')
corpus_embeddings = embed_model.encode(corpus, show_progress_bar=True)

# FAISS index
index = faiss.IndexFlatL2(len(corpus_embeddings[0]))
index.add(np.array(corpus_embeddings))

# Generator model
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")

# Generate Answer Function
def generate_answer(query, index, embeddings, corpus, embed_model):
    query_embedding = embed_model.encode([query])
    D, I = index.search(np.array(query_embedding), k=5)
    retrieved = [corpus[i] for i in I[0]]
    prompt = f"Context: {retrieved}\n\nQuestion: {query}\n\nAnswer:"
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
    outputs = model.generate(**inputs, max_new_tokens=128)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)