Create rag_pipeline.py
Browse files- rag_pipeline.py +31 -0
rag_pipeline.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
# Load Dataset
|
8 |
+
dataset = load_dataset("pubmed_qa", "pqa_labeled")
|
9 |
+
corpus = [entry['context'] for entry in dataset['train']]
|
10 |
+
|
11 |
+
# Embedding model
|
12 |
+
embed_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
13 |
+
corpus_embeddings = embed_model.encode(corpus, show_progress_bar=True)
|
14 |
+
|
15 |
+
# FAISS index
|
16 |
+
index = faiss.IndexFlatL2(len(corpus_embeddings[0]))
|
17 |
+
index.add(np.array(corpus_embeddings))
|
18 |
+
|
19 |
+
# Generator model
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")
|
22 |
+
|
23 |
+
# Generate Answer Function
|
24 |
+
def generate_answer(query, index, embeddings, corpus, embed_model):
|
25 |
+
query_embedding = embed_model.encode([query])
|
26 |
+
D, I = index.search(np.array(query_embedding), k=5)
|
27 |
+
retrieved = [corpus[i] for i in I[0]]
|
28 |
+
prompt = f"Context: {retrieved}\n\nQuestion: {query}\n\nAnswer:"
|
29 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
30 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
31 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|