File size: 2,969 Bytes
514b8b1
4df31f3
bdea63d
514b8b1
dcff825
4df31f3
dcff825
 
36ab993
52ea34b
dcff825
52ea34b
 
9303fde
52ea34b
dcff825
 
988ceee
dcff825
a41b014
988ceee
dcff825
988ceee
 
 
dcff825
988ceee
dcff825
988ceee
d237a07
36ab993
 
dcff825
d237a07
9303fde
dcff825
 
36ab993
dcff825
9303fde
dcff825
9303fde
d237a07
dcff825
 
9303fde
dcff825
36ab993
dcff825
 
d237a07
dcff825
d237a07
dcff825
 
 
 
d237a07
988ceee
dcff825
 
d237a07
dcff825
 
 
 
 
52ea34b
d237a07
36ab993
dcff825
514b8b1
dcff825
514b8b1
 
dcff825
 
a16e363
dcff825
514b8b1
 
dcff825
514b8b1
988ceee
514b8b1
 
 
 
 
 
 
 
 
 
 
 
 
bbfef86
4df31f3
a41b014
a16e363
610954a
d237a07
52ea34b
bdea63d
4d41f6e
e99084c
f3de939
dcff825
 
988ceee
cb84f56
9303fde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image

# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"

print("Initializing the application...")

try:
    print("Loading the model from Hugging Face Model Hub...")
    model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
    processor = CLIPProcessor.from_pretrained(model_name)
    print("Model and processor loaded successfully.")
except Exception as e:
    print(f"Error loading the model or processor: {e}")
    raise RuntimeError(f"Failed to load model: {e}")

# Step 2: Define the Inference Function
def classify_image(image):
    """
    Classify an image as 'safe' or 'unsafe' and return probabilities.

    Args:
        image (PIL.Image.Image): Uploaded image.
    
    Returns:
        dict: Classification results or an error message.
    """
    try:
        print("Starting image classification...")

        # Validate input
        if image is None:
            raise ValueError("No image provided. Please upload a valid image.")

        # Validate image format
        if not hasattr(image, "convert"):
            raise ValueError("Invalid image format. Please upload a valid image (JPEG, PNG, etc.).")

        # Define categories
        categories = ["safe", "unsafe"]

        # Process the image with the processor
        print("Processing the image...")
        inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
        print(f"Processed inputs: {inputs}")

        # Run inference with the model
        print("Running model inference...")
        outputs = model(**inputs)
        print(f"Model outputs: {outputs}")

        # Extract logits and probabilities
        logits_per_image = outputs.logits_per_image  # Image-text similarity scores
        probs = logits_per_image.softmax(dim=1)  # Convert logits to probabilities
        print(f"Calculated probabilities: {probs}")

        # Extract probabilities for each category
        safe_prob = probs[0][0].item() * 100  # Safe percentage
        unsafe_prob = probs[0][1].item() * 100  # Unsafe percentage

        # Return results
        return {
            "safe": f"{safe_prob:.2f}%",
            "unsafe": f"{unsafe_prob:.2f}%"
        }

    except Exception as e:
        print(f"Error during classification: {e}")
        return {"Error": str(e)}

# Step 3: Set Up Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil"),
    outputs=gr.Label(label="Output"),  # Display probabilities as a percentage scale
    title="Content Safety Classification",
    description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)

# Step 4: Launch Gradio Interface
if __name__ == "__main__":
    print("Launching the Gradio interface...")
    iface.launch()