Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import gradio as gr
|
3 |
from transformers import CLIPModel, CLIPProcessor
|
4 |
|
5 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
@@ -13,57 +12,40 @@ print("Model loaded successfully.")
|
|
13 |
# Step 2: Define the Inference Function
|
14 |
def classify_image(image):
|
15 |
"""
|
16 |
-
Classify an image as 'safe' or 'unsafe' with
|
17 |
|
18 |
Args:
|
19 |
image (PIL.Image.Image): The input image.
|
20 |
|
21 |
Returns:
|
22 |
-
dict: A dictionary containing main
|
23 |
"""
|
24 |
-
# Define the
|
25 |
main_categories = ["safe", "unsafe"]
|
26 |
-
safe_subcategories = ["retail product", "other safe content"]
|
27 |
-
unsafe_subcategories = ["harmful", "violent", "sexual", "self harm"]
|
28 |
|
29 |
# Process the image with the main categories
|
30 |
-
|
31 |
-
|
32 |
-
logits_per_image =
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Determine the main category
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
subcategories = safe_subcategories if main_category == "safe" else unsafe_subcategories
|
41 |
-
sub_inputs = processor(text=subcategories, images=image, return_tensors="pt", padding=True)
|
42 |
-
sub_outputs = model(**sub_inputs)
|
43 |
-
sub_logits = sub_outputs.logits_per_image
|
44 |
-
sub_probs = sub_logits.softmax(dim=1) # Convert logits to probabilities
|
45 |
-
|
46 |
-
# Create a structured result
|
47 |
-
result = {
|
48 |
-
"Main Category": main_category,
|
49 |
-
"Main Probabilities": main_result,
|
50 |
-
"Subcategory Probabilities": {
|
51 |
-
subcategories[i]: sub_probs[0][i].item() for i in range(len(subcategories))
|
52 |
-
}
|
53 |
-
}
|
54 |
-
return result
|
55 |
|
56 |
# Step 3: Set Up Gradio Interface
|
57 |
iface = gr.Interface(
|
58 |
fn=classify_image,
|
59 |
inputs=gr.Image(type="pil"),
|
60 |
outputs="json",
|
61 |
-
title="
|
62 |
-
description=
|
63 |
-
"Classify images as 'safe' or 'unsafe' using a fine-tuned CLIP model. "
|
64 |
-
"For 'safe', identify subcategories such as 'retail product'. "
|
65 |
-
"For 'unsafe', identify subcategories such as 'harmful', 'violent', 'sexual', or 'self harm'."
|
66 |
-
),
|
67 |
)
|
68 |
|
69 |
# Step 4: Launch Gradio Interface
|
@@ -84,3 +66,4 @@ if __name__ == "__main__":
|
|
84 |
|
85 |
|
86 |
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
|
4 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
|
|
12 |
# Step 2: Define the Inference Function
|
13 |
def classify_image(image):
|
14 |
"""
|
15 |
+
Classify an image as 'safe' or 'unsafe' with the corresponding percentage.
|
16 |
|
17 |
Args:
|
18 |
image (PIL.Image.Image): The input image.
|
19 |
|
20 |
Returns:
|
21 |
+
dict: A dictionary containing the main category (safe/unsafe) and its percentage.
|
22 |
"""
|
23 |
+
# Define the main categories
|
24 |
main_categories = ["safe", "unsafe"]
|
|
|
|
|
25 |
|
26 |
# Process the image with the main categories
|
27 |
+
inputs = processor(text=main_categories, images=image, return_tensors="pt", padding=True)
|
28 |
+
outputs = model(**inputs)
|
29 |
+
logits_per_image = outputs.logits_per_image # Image-text similarity scores
|
30 |
+
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
31 |
+
|
32 |
+
# Extract the category with the highest probability
|
33 |
+
safe_probability = probs[0][0].item() * 100 # Safe percentage
|
34 |
+
unsafe_probability = probs[0][1].item() * 100 # Unsafe percentage
|
35 |
|
36 |
# Determine the main category
|
37 |
+
if safe_probability > unsafe_probability:
|
38 |
+
return {"Category": "safe", "Probability": f"{safe_probability:.2f}%"}
|
39 |
+
else:
|
40 |
+
return {"Category": "unsafe", "Probability": f"{unsafe_probability:.2f}%"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Step 3: Set Up Gradio Interface
|
43 |
iface = gr.Interface(
|
44 |
fn=classify_image,
|
45 |
inputs=gr.Image(type="pil"),
|
46 |
outputs="json",
|
47 |
+
title="Content Safety Classification",
|
48 |
+
description="Classify images as 'safe' or 'unsafe' with their respective percentage.",
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
|
51 |
# Step 4: Launch Gradio Interface
|
|
|
66 |
|
67 |
|
68 |
|
69 |
+
|