Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,129 +1,26 @@
|
|
1 |
import os
|
2 |
-
import zipfile
|
3 |
import torch
|
4 |
-
from torch import nn, optim
|
5 |
-
from torch.utils.data import DataLoader, Dataset
|
6 |
from torchvision import transforms
|
7 |
from PIL import Image
|
8 |
from transformers import CLIPModel, CLIPProcessor
|
9 |
import gradio as gr
|
10 |
|
11 |
-
# Ensure
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# Step
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
print("
|
24 |
-
|
25 |
-
|
26 |
-
print("Extraction complete.")
|
27 |
-
|
28 |
-
# Step 2: Dynamically find the 'safe' and 'unsafe' folders
|
29 |
-
def find_dataset_path(root_dir):
|
30 |
-
for root, dirs, files in os.walk(root_dir):
|
31 |
-
if 'safe' in dirs and 'unsafe' in dirs:
|
32 |
-
return root
|
33 |
-
return None
|
34 |
-
|
35 |
-
# Look for 'safe' and 'unsafe' inside 'data/Data'
|
36 |
-
dataset_path = find_dataset_path("data/Data")
|
37 |
-
if dataset_path is None:
|
38 |
-
print("Debugging extracted structure:")
|
39 |
-
for root, dirs, files in os.walk("data"):
|
40 |
-
print(f"Root: {root}")
|
41 |
-
print(f"Directories: {dirs}")
|
42 |
-
print(f"Files: {files}")
|
43 |
-
raise FileNotFoundError("Expected 'safe' and 'unsafe' folders not found inside 'data/Data'. Please check the Data.zip structure.")
|
44 |
-
print(f"Dataset path found: {dataset_path}")
|
45 |
-
|
46 |
-
# Step 3: Define Custom Dataset Class
|
47 |
-
class CustomImageDataset(Dataset):
|
48 |
-
def __init__(self, root_dir, transform=None):
|
49 |
-
self.root_dir = root_dir
|
50 |
-
self.transform = transform
|
51 |
-
self.image_paths = []
|
52 |
-
self.labels = []
|
53 |
-
|
54 |
-
for label, folder in enumerate(["safe", "unsafe"]): # 0 = safe, 1 = unsafe
|
55 |
-
folder_path = os.path.join(root_dir, folder)
|
56 |
-
if not os.path.exists(folder_path):
|
57 |
-
raise FileNotFoundError(f"Folder '{folder}' not found in '{root_dir}'")
|
58 |
-
for filename in os.listdir(folder_path):
|
59 |
-
if filename.endswith((".jpg", ".jpeg", ".png")): # Only load image files
|
60 |
-
self.image_paths.append(os.path.join(folder_path, filename))
|
61 |
-
self.labels.append(label)
|
62 |
-
|
63 |
-
def __len__(self):
|
64 |
-
return len(self.image_paths)
|
65 |
-
|
66 |
-
def __getitem__(self, idx):
|
67 |
-
image_path = self.image_paths[idx]
|
68 |
-
image = Image.open(image_path).convert("RGB")
|
69 |
-
label = self.labels[idx]
|
70 |
-
if self.transform:
|
71 |
-
image = self.transform(image)
|
72 |
-
return image, label
|
73 |
-
|
74 |
-
# Step 4: Data Transformations
|
75 |
-
transform = transforms.Compose([
|
76 |
-
transforms.Resize((224, 224)), # Resize to 224x224 pixels
|
77 |
-
transforms.ToTensor(), # Convert to tensor
|
78 |
-
transforms.Normalize((0.5,), (0.5,)), # Normalize image values
|
79 |
-
])
|
80 |
-
|
81 |
-
# Step 5: Load the Dataset
|
82 |
-
train_dataset = CustomImageDataset(dataset_path, transform=transform)
|
83 |
-
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
84 |
-
|
85 |
-
# Debugging: Check the dataset
|
86 |
-
print(f"Number of samples in the dataset: {len(train_dataset)}")
|
87 |
-
if len(train_dataset) == 0:
|
88 |
-
raise ValueError("The dataset is empty. Please check if 'Data.zip' is correctly unzipped and contains 'safe' and 'unsafe' folders.")
|
89 |
-
|
90 |
-
# Step 6: Load Pretrained CLIP Model
|
91 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
92 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
93 |
-
|
94 |
-
# Add a Classification Layer
|
95 |
-
model.classifier = nn.Linear(model.visual_projection.out_features, 2) # 2 classes: safe, unsafe
|
96 |
-
|
97 |
-
# Define Optimizer and Loss Function
|
98 |
-
optimizer = optim.Adam(model.classifier.parameters(), lr=1e-4)
|
99 |
-
criterion = nn.CrossEntropyLoss()
|
100 |
-
|
101 |
-
# Step 7: Fine-Tune the Model
|
102 |
-
model.train()
|
103 |
-
for epoch in range(3): # Number of epochs
|
104 |
-
total_loss = 0
|
105 |
-
for images, labels in train_loader:
|
106 |
-
optimizer.zero_grad()
|
107 |
-
images = torch.stack([img.to(torch.float32) for img in images]) # Batch of images
|
108 |
-
outputs = model.get_image_features(pixel_values=images)
|
109 |
-
logits = model.classifier(outputs)
|
110 |
-
loss = criterion(logits, labels)
|
111 |
-
loss.backward()
|
112 |
-
optimizer.step()
|
113 |
-
total_loss += loss.item()
|
114 |
-
print(f"Epoch {epoch+1}, Loss: {total_loss / len(train_loader)}")
|
115 |
-
|
116 |
-
# Save the Fine-Tuned Model
|
117 |
-
model.save_pretrained("fine-tuned-model")
|
118 |
-
processor.save_pretrained("fine-tuned-model")
|
119 |
-
print("Model fine-tuned and saved successfully.")
|
120 |
-
|
121 |
-
# Step 8: Define Gradio Inference Function
|
122 |
def classify_image(image, class_names):
|
123 |
-
# Load Fine-Tuned Model
|
124 |
-
model = CLIPModel.from_pretrained("fine-tuned-model")
|
125 |
-
processor = CLIPProcessor.from_pretrained("fine-tuned-model")
|
126 |
-
|
127 |
# Split class names from comma-separated input
|
128 |
labels = [label.strip() for label in class_names.split(",") if label.strip()]
|
129 |
if not labels:
|
@@ -139,7 +36,7 @@ def classify_image(image, class_names):
|
|
139 |
result = {label: probs[0][i].item() for i, label in enumerate(labels)}
|
140 |
return dict(sorted(result.items(), key=lambda item: item[1], reverse=True))
|
141 |
|
142 |
-
# Step
|
143 |
iface = gr.Interface(
|
144 |
fn=classify_image,
|
145 |
inputs=[
|
@@ -151,7 +48,7 @@ iface = gr.Interface(
|
|
151 |
description="Classify images as 'safe' or 'unsafe' using a fine-tuned CLIP model.",
|
152 |
)
|
153 |
|
154 |
-
# Launch Gradio Interface
|
155 |
if __name__ == "__main__":
|
156 |
iface.launch()
|
157 |
|
@@ -166,3 +63,4 @@ if __name__ == "__main__":
|
|
166 |
|
167 |
|
168 |
|
|
|
|
1 |
import os
|
|
|
2 |
import torch
|
|
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
from transformers import CLIPModel, CLIPProcessor
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Step 1: Ensure Fine-Tuned Model is Available
|
9 |
+
fine_tuned_model_path = "fine-tuned-model"
|
10 |
+
|
11 |
+
if not os.path.exists(fine_tuned_model_path):
|
12 |
+
raise FileNotFoundError(
|
13 |
+
f"The fine-tuned model is missing. Ensure that the fine-tuned model files are available in the '{fine_tuned_model_path}' directory."
|
14 |
+
)
|
15 |
+
|
16 |
+
# Step 2: Load Fine-Tuned Model
|
17 |
+
print("Loading fine-tuned model...")
|
18 |
+
model = CLIPModel.from_pretrained(fine_tuned_model_path)
|
19 |
+
processor = CLIPProcessor.from_pretrained(fine_tuned_model_path)
|
20 |
+
print("Fine-tuned model loaded successfully.")
|
21 |
+
|
22 |
+
# Step 3: Define Gradio Inference Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def classify_image(image, class_names):
|
|
|
|
|
|
|
|
|
24 |
# Split class names from comma-separated input
|
25 |
labels = [label.strip() for label in class_names.split(",") if label.strip()]
|
26 |
if not labels:
|
|
|
36 |
result = {label: probs[0][i].item() for i, label in enumerate(labels)}
|
37 |
return dict(sorted(result.items(), key=lambda item: item[1], reverse=True))
|
38 |
|
39 |
+
# Step 4: Set Up Gradio Interface
|
40 |
iface = gr.Interface(
|
41 |
fn=classify_image,
|
42 |
inputs=[
|
|
|
48 |
description="Classify images as 'safe' or 'unsafe' using a fine-tuned CLIP model.",
|
49 |
)
|
50 |
|
51 |
+
# Step 5: Launch Gradio Interface
|
52 |
if __name__ == "__main__":
|
53 |
iface.launch()
|
54 |
|
|
|
63 |
|
64 |
|
65 |
|
66 |
+
|