climsim / app.py
puqi's picture
Update app.py
8ab13a8
import streamlit as st
from data_utils import *
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm
st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
st.link_button("Go to ClimSim Github Repository", "https://github.com/leap-stc/ClimSim/tree/main",use_container_width=True)
st.header('**Step 1:** Import data_utils')
st.code('''from data_utils import *''',language='python')
st.header('**Step 2:** Instantiate class')
st.link_button("Go to original grid_info", "https://github.com/leap-stc/ClimSim/tree/main/grid_info",use_container_width=True)
st.link_button("Go to original input_mean input_max input_min output_scale", "https://github.com/leap-stc/ClimSim/tree/main/preprocessing/normalizations",use_container_width=True)
st.code('''#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
# set variables to V1 subset
data.set_to_v1_vars()''',language='python')
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
data.set_to_v1_vars()
st.header('**Step 3:** Load training and validation data')
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')
data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')
st.header('**Step 4:** Train models')
st.subheader('Train constant prediction model')
st.latex(r'''\hat{y}=E[y_{train}]''')
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
const_model = data.target_train.mean(axis = 0)
st.subheader('Train multiple linear regression model')
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
\hat{y}=X^{T}_{input} \beta \\
\text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\
X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''')
st.text('adding bias unit')
st.code('''X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)''',language='python')
X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)
st.text('create model')
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
st.subheader('Train your models here')
st.code('''###
# train your model here
###''',language='python')
st.header('**Step 5:** Evaluate on validation data')
st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'val')''',language='python')
data.set_pressure_grid(data_split = 'val')
st.subheader('Load predictions')
st.code('''# Constant Prediction
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)
# Multiple Linear Regression
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)
# Load your prediction here
# Load predictions into data_utils object
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))''',language='python')
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))
st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')''',language='python')
data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')
st.subheader('Set and calculate metrics')
st.code('''data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')''',language='python')
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')
st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''',language='python')
letters = string.ascii_lowercase
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)
st.text('If you trained models with different hyperparameters, use the ones that performed the best on validation data for evaluation on scoring data.')
st.header('**Step 6:** Evaluate on scoring data')
st.subheader('Do this at the VERY END (when you have finished tuned the hyperparameters for your model and are seeking a final evaluation)')
st.subheader('Load scoring data')
st.code('''data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')
''',language='python')
data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')
st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'scoring')''',language='python')
data.set_pressure_grid(data_split = 'scoring')
st.subheader('Load predictions')
st.code('''# constant prediction
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)
# multiple linear regression
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)
# Your model prediction here
# Load predictions into object
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))''',language='python')
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))
st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')
# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')''',language='python')
# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')
# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')
st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''')
letters = string.ascii_lowercase
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)