import streamlit as st from data_utils import * import xarray as xr import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle import glob, os import re import tensorflow as tf import netCDF4 import copy import string import h5py from tqdm import tqdm st.title('A _Quickstart Notebook_ for :blue[ClimSim]:') st.link_button("Go to ClimSim Github Repository", "https://github.com/leap-stc/ClimSim/tree/main",use_container_width=True) st.header('**Step 1:** Import data_utils') st.code('''from data_utils import *''',language='python') st.header('**Step 2:** Instantiate class') st.link_button("Go to original grid_info", "https://github.com/leap-stc/ClimSim/tree/main/grid_info",use_container_width=True) st.link_button("Go to original input_mean input_max input_min output_scale", "https://github.com/leap-stc/ClimSim/tree/main/preprocessing/normalizations",use_container_width=True) st.code('''#Change the path to your own grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc') input_mean = xr.open_dataset('input_mean.nc') input_max = xr.open_dataset('input_max.nc') input_min = xr.open_dataset('input_min.nc') output_scale = xr.open_dataset('output_scale.nc') data = data_utils(grid_info = grid_info, input_mean = input_mean, input_max = input_max, input_min = input_min, output_scale = output_scale) # set variables to V1 subset data.set_to_v1_vars()''',language='python') grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc') input_mean = xr.open_dataset('input_mean.nc') input_max = xr.open_dataset('input_max.nc') input_min = xr.open_dataset('input_min.nc') output_scale = xr.open_dataset('output_scale.nc') data = data_utils(grid_info = grid_info, input_mean = input_mean, input_max = input_max, input_min = input_min, output_scale = output_scale) data.set_to_v1_vars() st.header('**Step 3:** Load training and validation data') st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True) st.code('''data.input_train = data.load_npy_file('train_input_small.npy') data.target_train = data.load_npy_file('train_target_small.npy') data.input_val = data.load_npy_file('val_input_small.npy') data.target_val = data.load_npy_file('val_target_small.npy')''',language='python') data.input_train = data.load_npy_file('train_input_small.npy') data.target_train = data.load_npy_file('train_target_small.npy') data.input_val = data.load_npy_file('val_input_small.npy') data.target_val = data.load_npy_file('val_target_small.npy') st.header('**Step 4:** Train models') st.subheader('Train constant prediction model') st.latex(r'''\hat{y}=E[y_{train}]''') st.code('''const_model = data.target_train.mean(axis = 0)''',language='python') const_model = data.target_train.mean(axis = 0) st.subheader('Train multiple linear regression model') st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\ \hat{y}=X^{T}_{input} \beta \\ \text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\ X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''') st.text('adding bias unit') st.code('''X = data.input_train bias_vector = np.ones((X.shape[0], 1)) X = np.concatenate((X, bias_vector), axis=1)''',language='python') X = data.input_train bias_vector = np.ones((X.shape[0], 1)) X = np.concatenate((X, bias_vector), axis=1) st.text('create model') st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python') mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train st.subheader('Train your models here') st.code('''### # train your model here ###''',language='python') st.header('**Step 5:** Evaluate on validation data') st.subheader('Set pressure grid') st.code('''data.set_pressure_grid(data_split = 'val')''',language='python') data.set_pressure_grid(data_split = 'val') st.subheader('Load predictions') st.code('''# Constant Prediction const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0) print(const_pred_val.shape) # Multiple Linear Regression X_val = data.input_val bias_vector_val = np.ones((X_val.shape[0], 1)) X_val = np.concatenate((X_val, bias_vector_val), axis=1) mlr_pred_val = X_val@mlr_weights print(mlr_pred_val.shape) # Load your prediction here # Load predictions into data_utils object data.model_names = ['const', 'mlr'] # add names of your models here preds = [const_pred_val, mlr_pred_val] # add your custom predictions here data.preds_val = dict(zip(data.model_names, preds))''',language='python') const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0) print(const_pred_val.shape) X_val = data.input_val bias_vector_val = np.ones((X_val.shape[0], 1)) X_val = np.concatenate((X_val, bias_vector_val), axis=1) mlr_pred_val = X_val@mlr_weights print(mlr_pred_val.shape) data.model_names = ['const', 'mlr'] # add names of your models here preds = [const_pred_val, mlr_pred_val] # add your custom predictions here data.preds_val = dict(zip(data.model_names, preds)) st.subheader('Weight predictions and target') st.text('''1.Undo output scaling 2.Weight vertical levels by dp/g 3.Weight horizontal area of each grid cell by a[x]/mean(a[x]) 4.Convert units to a common energy unit''') st.code('''data.reweight_target(data_split = 'val') data.reweight_preds(data_split = 'val')''',language='python') data.reweight_target(data_split = 'val') data.reweight_preds(data_split = 'val') st.subheader('Set and calculate metrics') st.code('''data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias'] data.create_metrics_df(data_split = 'val')''',language='python') data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias'] data.create_metrics_df(data_split = 'val') st.subheader('Create plots') st.code('''# set plotting settings %config InlineBackend.figure_format = 'retina' letters = string.ascii_lowercase # create custom dictionary for plotting dict_var = data.metrics_var_val plot_df_byvar = {} for metric in data.metrics_names: plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names], index=data.model_names) plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose() # plot figure fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True) for i in range(len(data.metrics_names)): plot_df_byvar[data.metrics_names[i]].plot.bar( legend = False, ax = axes[i]) if data.metrics_names[i] != 'R2': axes[i].set_ylabel('$W/m^2$') else: axes[i].set_ylim(0,1) axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}') axes[i].set_xlabel('Output variable') axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \ rotation=0, ha='center') axes[0].legend(columnspacing = .9, labelspacing = .3, handleheight = .07, handlelength = 1.5, handletextpad = .2, borderpad = .2, ncol = 3, loc = 'upper right') fig.set_size_inches(7,8) fig.tight_layout()''',language='python') letters = string.ascii_lowercase dict_var = data.metrics_var_val plot_df_byvar = {} for metric in data.metrics_names: plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names], index=data.model_names) plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose() fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True) for i in range(len(data.metrics_names)): plot_df_byvar[data.metrics_names[i]].plot.bar( legend = False, ax = axes[i]) if data.metrics_names[i] != 'R2': axes[i].set_ylabel('$W/m^2$') else: axes[i].set_ylim(0,1) axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}') axes[i].set_xlabel('Output variable') axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \ rotation=0, ha='center') axes[0].legend(columnspacing = .9, labelspacing = .3, handleheight = .07, handlelength = 1.5, handletextpad = .2, borderpad = .2, ncol = 3, loc = 'upper right') fig.set_size_inches(7,8) fig.tight_layout() st.pyplot(fig) st.text('If you trained models with different hyperparameters, use the ones that performed the best on validation data for evaluation on scoring data.') st.header('**Step 6:** Evaluate on scoring data') st.subheader('Do this at the VERY END (when you have finished tuned the hyperparameters for your model and are seeking a final evaluation)') st.subheader('Load scoring data') st.code('''data.input_scoring = np.load('scoring_input_small.npy') data.target_scoring = np.load('scoring_target_small.npy') ''',language='python') data.input_scoring = np.load('scoring_input_small.npy') data.target_scoring = np.load('scoring_target_small.npy') st.subheader('Set pressure grid') st.code('''data.set_pressure_grid(data_split = 'scoring')''',language='python') data.set_pressure_grid(data_split = 'scoring') st.subheader('Load predictions') st.code('''# constant prediction const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0) print(const_pred_scoring.shape) # multiple linear regression X_scoring = data.input_scoring bias_vector_scoring = np.ones((X_scoring.shape[0], 1)) X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1) mlr_pred_scoring = X_scoring@mlr_weights print(mlr_pred_scoring.shape) # Your model prediction here # Load predictions into object data.model_names = ['const', 'mlr'] # model name here preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here data.preds_scoring = dict(zip(data.model_names, preds))''',language='python') const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0) print(const_pred_scoring.shape) X_scoring = data.input_scoring bias_vector_scoring = np.ones((X_scoring.shape[0], 1)) X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1) mlr_pred_scoring = X_scoring@mlr_weights print(mlr_pred_scoring.shape) data.model_names = ['const', 'mlr'] # model name here preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here data.preds_scoring = dict(zip(data.model_names, preds)) st.subheader('Weight predictions and target') st.text('''1.Undo output scaling 2.Weight vertical levels by dp/g 3.Weight horizontal area of each grid cell by a[x]/mean(a[x]) 4.Convert units to a common energy unit''') st.code('''# weight predictions and target data.reweight_target(data_split = 'scoring') data.reweight_preds(data_split = 'scoring') # set and calculate metrics data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias'] data.create_metrics_df(data_split = 'scoring')''',language='python') # weight predictions and target data.reweight_target(data_split = 'scoring') data.reweight_preds(data_split = 'scoring') # set and calculate metrics data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias'] data.create_metrics_df(data_split = 'scoring') st.subheader('Create plots') st.code('''# set plotting settings %config InlineBackend.figure_format = 'retina' letters = string.ascii_lowercase # create custom dictionary for plotting dict_var = data.metrics_var_scoring plot_df_byvar = {} for metric in data.metrics_names: plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names], index=data.model_names) plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose() # plot figure fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True) for i in range(len(data.metrics_names)): plot_df_byvar[data.metrics_names[i]].plot.bar( legend = False, ax = axes[i]) if data.metrics_names[i] != 'R2': axes[i].set_ylabel('$W/m^2$') else: axes[i].set_ylim(0,1) axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}') axes[i].set_xlabel('Output variable') axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \ rotation=0, ha='center') axes[0].legend(columnspacing = .9, labelspacing = .3, handleheight = .07, handlelength = 1.5, handletextpad = .2, borderpad = .2, ncol = 3, loc = 'upper right') fig.set_size_inches(7,8) fig.tight_layout()''') letters = string.ascii_lowercase dict_var = data.metrics_var_scoring plot_df_byvar = {} for metric in data.metrics_names: plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names], index=data.model_names) plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose() fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True) for i in range(len(data.metrics_names)): plot_df_byvar[data.metrics_names[i]].plot.bar( legend = False, ax = axes[i]) if data.metrics_names[i] != 'R2': axes[i].set_ylabel('$W/m^2$') else: axes[i].set_ylim(0,1) axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}') axes[i].set_xlabel('Output variable') axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \ rotation=0, ha='center') axes[0].legend(columnspacing = .9, labelspacing = .3, handleheight = .07, handlelength = 1.5, handletextpad = .2, borderpad = .2, ncol = 3, loc = 'upper right') fig.set_size_inches(7,8) fig.tight_layout() st.pyplot(fig)