OCR-APP / app.py
profchaos's picture
Create app.py
80a164c verified
# Import libraries
import cv2
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
import torch
from byaldi import RAGMultiModalModel
#from google.colab import files
from IPython.display import display, HTML
import os
import re
# to detect cuda(GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
#loading models
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali", verbose=0)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
torch.cuda.empty_cache()
#Upload image
# def upload_image():
# uploaded = files.upload()
# for filename in uploaded.keys():
# print(f'Uploaded file: {filename}')
# return filename
# image_path = upload_image()
# Preprocessing using OpenCV
def preprocess_image(image_path):
image = cv2.imread(image_path)
if image is None:
raise FileNotFoundError(f"Image not found at the path: {image_path}")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Maintain aspect ratio
height, width = gray.shape
if height > width:
new_height = 1024
new_width = int((width / height) * new_height)
else:
new_width = 1024
new_height = int((height / width) * new_width)
resized_image = cv2.resize(gray, (new_width, new_height))
blurred = cv2.GaussianBlur(resized_image, (5, 5), 0)
thresholded = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
denoised = cv2.fastNlMeansDenoising(thresholded, h=30)
pil_image = Image.fromarray(denoised)
return pil_image
# Call the function and store the result
# pil_image = preprocess_image(image_path)
# display(pil_image) # Now pil_image is accessible here
#extract the text
def extract_text(image_path):
try:
processed_image = preprocess_image(image_path)
messages = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "PLease extract the both hindi and english text as they appear in the image"}]}
]
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[processed_image], padding=True, return_tensors="pt").to(device)
output_ids = model.generate(**inputs, max_new_tokens=1042)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
return extracted_text
except Exception as e:
return f"An error occurred during text extraction: {e}"
#keyword searching
def keyword_search(extracted_text, keywords):
if not keywords:
return extracted_text, "Please enter a keyword to search and highlight."
keywords = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
highlighted_text = ""
lines = extracted_text.split('\n')
for line in lines:
for keyword in keywords:
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
line = pattern.sub(lambda m: f'<span style="color: red;">{m.group()}</span>', line)
highlighted_text += line + '\n'
return highlighted_text
#OCR and keyword search interface
def ocr_interface(image):
image_path = "temp_image.png"
image.save(image_path)
extracted_text = extract_text(image_path)
os.remove(image_path)
return extracted_text, ""
def keyword_interface(extracted_text, keywords):
highlighted_text = keyword_search(extracted_text, keywords)
return highlighted_text
# Function to launch the Gradio interface
import gradio as gr
def launch_gradio():
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image for OCR")
with gr.Column():
extracted_text = gr.Textbox(label="Extracted Text", lines=10, interactive=False)
keywords = gr.Textbox(label="Enter Keywords (comma-separated)", interactive=True)
highlighted_text = gr.HTML(label="Highlighted Text")
extract_btn = gr.Button("Extract Text")
extract_btn.click(fn=ocr_interface, inputs=image_input, outputs=[extracted_text, highlighted_text])
keyword_btn = gr.Button("Search & Highlight Keywords")
keyword_btn.click(fn=keyword_interface, inputs=[extracted_text, keywords], outputs=highlighted_text)
interface.launch()
if __name__ == "__main__":
launch_gradio()