Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
5 |
+
import torch
|
6 |
+
from byaldi import RAGMultiModalModel
|
7 |
+
#from google.colab import files
|
8 |
+
from IPython.display import display, HTML
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
|
12 |
+
# to detect cuda(GPU)
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
print("Using device:", device)
|
15 |
+
|
16 |
+
#loading models
|
17 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali", verbose=0)
|
18 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
19 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
24 |
+
|
25 |
+
torch.cuda.empty_cache()
|
26 |
+
|
27 |
+
#Upload image
|
28 |
+
# def upload_image():
|
29 |
+
# uploaded = files.upload()
|
30 |
+
# for filename in uploaded.keys():
|
31 |
+
# print(f'Uploaded file: {filename}')
|
32 |
+
# return filename
|
33 |
+
|
34 |
+
# image_path = upload_image()
|
35 |
+
|
36 |
+
# Preprocessing using OpenCV
|
37 |
+
def preprocess_image(image_path):
|
38 |
+
image = cv2.imread(image_path)
|
39 |
+
if image is None:
|
40 |
+
raise FileNotFoundError(f"Image not found at the path: {image_path}")
|
41 |
+
|
42 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
43 |
+
|
44 |
+
# Maintain aspect ratio
|
45 |
+
height, width = gray.shape
|
46 |
+
if height > width:
|
47 |
+
new_height = 1024
|
48 |
+
new_width = int((width / height) * new_height)
|
49 |
+
else:
|
50 |
+
new_width = 1024
|
51 |
+
new_height = int((height / width) * new_width)
|
52 |
+
|
53 |
+
resized_image = cv2.resize(gray, (new_width, new_height))
|
54 |
+
|
55 |
+
blurred = cv2.GaussianBlur(resized_image, (5, 5), 0)
|
56 |
+
thresholded = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
|
57 |
+
denoised = cv2.fastNlMeansDenoising(thresholded, h=30)
|
58 |
+
pil_image = Image.fromarray(denoised)
|
59 |
+
|
60 |
+
return pil_image
|
61 |
+
|
62 |
+
# Call the function and store the result
|
63 |
+
# pil_image = preprocess_image(image_path)
|
64 |
+
|
65 |
+
# display(pil_image) # Now pil_image is accessible here
|
66 |
+
|
67 |
+
#extract the text
|
68 |
+
def extract_text(image_path):
|
69 |
+
try:
|
70 |
+
processed_image = preprocess_image(image_path)
|
71 |
+
messages = [
|
72 |
+
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "PLease extract the both hindi and english text as they appear in the image"}]}
|
73 |
+
]
|
74 |
+
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
75 |
+
inputs = processor(text=[text_prompt], images=[processed_image], padding=True, return_tensors="pt").to(device)
|
76 |
+
output_ids = model.generate(**inputs, max_new_tokens=1042)
|
77 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
78 |
+
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
|
79 |
+
return extracted_text
|
80 |
+
except Exception as e:
|
81 |
+
return f"An error occurred during text extraction: {e}"
|
82 |
+
|
83 |
+
#keyword searching
|
84 |
+
def keyword_search(extracted_text, keywords):
|
85 |
+
if not keywords:
|
86 |
+
return extracted_text, "Please enter a keyword to search and highlight."
|
87 |
+
keywords = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
|
88 |
+
|
89 |
+
highlighted_text = ""
|
90 |
+
|
91 |
+
lines = extracted_text.split('\n')
|
92 |
+
for line in lines:
|
93 |
+
for keyword in keywords:
|
94 |
+
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
|
95 |
+
line = pattern.sub(lambda m: f'<span style="color: red;">{m.group()}</span>', line)
|
96 |
+
highlighted_text += line + '\n'
|
97 |
+
return highlighted_text
|
98 |
+
|
99 |
+
#OCR and keyword search interface
|
100 |
+
def ocr_interface(image):
|
101 |
+
image_path = "temp_image.png"
|
102 |
+
image.save(image_path)
|
103 |
+
extracted_text = extract_text(image_path)
|
104 |
+
os.remove(image_path)
|
105 |
+
|
106 |
+
return extracted_text, ""
|
107 |
+
def keyword_interface(extracted_text, keywords):
|
108 |
+
highlighted_text = keyword_search(extracted_text, keywords)
|
109 |
+
return highlighted_text
|
110 |
+
|
111 |
+
# Function to launch the Gradio interface
|
112 |
+
import gradio as gr
|
113 |
+
def launch_gradio():
|
114 |
+
with gr.Blocks() as interface:
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
image_input = gr.Image(type="pil", label="Upload Image for OCR")
|
118 |
+
|
119 |
+
with gr.Column():
|
120 |
+
extracted_text = gr.Textbox(label="Extracted Text", lines=10, interactive=False)
|
121 |
+
|
122 |
+
keywords = gr.Textbox(label="Enter Keywords (comma-separated)", interactive=True)
|
123 |
+
highlighted_text = gr.HTML(label="Highlighted Text")
|
124 |
+
|
125 |
+
extract_btn = gr.Button("Extract Text")
|
126 |
+
extract_btn.click(fn=ocr_interface, inputs=image_input, outputs=[extracted_text, highlighted_text])
|
127 |
+
|
128 |
+
keyword_btn = gr.Button("Search & Highlight Keywords")
|
129 |
+
keyword_btn.click(fn=keyword_interface, inputs=[extracted_text, keywords], outputs=highlighted_text)
|
130 |
+
|
131 |
+
interface.launch()
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
launch_gradio()
|