# Import libraries import cv2 from PIL import Image from transformers import AutoProcessor, Qwen2VLForConditionalGeneration import torch from byaldi import RAGMultiModalModel #from google.colab import files from IPython.display import display, HTML import os import re # to detect cuda(GPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Using device:", device) #loading models RAG = RAGMultiModalModel.from_pretrained("vidore/colpali", verbose=0) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float16, device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") torch.cuda.empty_cache() #Upload image # def upload_image(): # uploaded = files.upload() # for filename in uploaded.keys(): # print(f'Uploaded file: {filename}') # return filename # image_path = upload_image() # Preprocessing using OpenCV def preprocess_image(image_path): image = cv2.imread(image_path) if image is None: raise FileNotFoundError(f"Image not found at the path: {image_path}") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Maintain aspect ratio height, width = gray.shape if height > width: new_height = 1024 new_width = int((width / height) * new_height) else: new_width = 1024 new_height = int((height / width) * new_width) resized_image = cv2.resize(gray, (new_width, new_height)) blurred = cv2.GaussianBlur(resized_image, (5, 5), 0) thresholded = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) denoised = cv2.fastNlMeansDenoising(thresholded, h=30) pil_image = Image.fromarray(denoised) return pil_image # Call the function and store the result # pil_image = preprocess_image(image_path) # display(pil_image) # Now pil_image is accessible here #extract the text def extract_text(image_path): try: processed_image = preprocess_image(image_path) messages = [ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "PLease extract the both hindi and english text as they appear in the image"}]} ] text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=[text_prompt], images=[processed_image], padding=True, return_tensors="pt").to(device) output_ids = model.generate(**inputs, max_new_tokens=1042) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)] extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] return extracted_text except Exception as e: return f"An error occurred during text extraction: {e}" #keyword searching def keyword_search(extracted_text, keywords): if not keywords: return extracted_text, "Please enter a keyword to search and highlight." keywords = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()] highlighted_text = "" lines = extracted_text.split('\n') for line in lines: for keyword in keywords: pattern = re.compile(re.escape(keyword), re.IGNORECASE) line = pattern.sub(lambda m: f'{m.group()}', line) highlighted_text += line + '\n' return highlighted_text #OCR and keyword search interface def ocr_interface(image): image_path = "temp_image.png" image.save(image_path) extracted_text = extract_text(image_path) os.remove(image_path) return extracted_text, "" def keyword_interface(extracted_text, keywords): highlighted_text = keyword_search(extracted_text, keywords) return highlighted_text # Function to launch the Gradio interface import gradio as gr def launch_gradio(): with gr.Blocks() as interface: with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="Upload Image for OCR") with gr.Column(): extracted_text = gr.Textbox(label="Extracted Text", lines=10, interactive=False) keywords = gr.Textbox(label="Enter Keywords (comma-separated)", interactive=True) highlighted_text = gr.HTML(label="Highlighted Text") extract_btn = gr.Button("Extract Text") extract_btn.click(fn=ocr_interface, inputs=image_input, outputs=[extracted_text, highlighted_text]) keyword_btn = gr.Button("Search & Highlight Keywords") keyword_btn.click(fn=keyword_interface, inputs=[extracted_text, keywords], outputs=highlighted_text) interface.launch() if __name__ == "__main__": launch_gradio()