Bot_RAG / app.py
pradeepsengarr's picture
Update app.py
38fe9c5 verified
raw
history blame
13.4 kB
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# # Define global variables
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# # Streamlit app configuration
# st.set_page_config(page_title="Audit Assistant", layout="wide")
# st.title("Audit Assistant")
# # Load the model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # Helper Functions
# def extract_text_from_pdf(file_path):
# """Extract text from a PDF using PyMuPDF (fitz)."""
# try:
# doc = fitz.open(file_path)
# text = ""
# for page_num in range(doc.page_count):
# page = doc.load_page(page_num)
# text += page.get_text("text")
# return text
# except Exception as e:
# logging.error(f"Error reading PDF {file_path}: {e}")
# return None
# def data_ingestion():
# """Function to load PDFs and create embeddings with improved error handling and efficiency."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PDFMinerLoader(file_path)
# loaded_docs = loader.load()
# if not loaded_docs:
# logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except ValueError as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# # Proceed to split and embed the documents
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# """Set up the language model pipeline."""
# logging.info("Setting up LLM pipeline")
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# local_llm = HuggingFacePipeline(pipeline=pipe)
# logging.info("LLM pipeline setup complete")
# return local_llm
# def qa_llm():
# """Set up the question-answering chain."""
# logging.info("Setting up QA model")
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever() # Set up the retriever for the vector store
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# logging.info("QA model setup complete")
# return qa
# def process_answer(user_question):
# """Generate an answer to the user’s question."""
# try:
# logging.info("Processing user question")
# qa = qa_llm()
# tailored_prompt = f"""
# You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
# Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
# and accounting standards based on the provided PDF documents.
# Please respond effectively and refer to the relevant standards and policies whenever applicable.
# User question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# if "not provide" in answer or "no information" in answer:
# return "The document does not provide sufficient information to answer your question."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Error processing the question."
# # Streamlit UI Setup
# st.sidebar.header("File Upload")
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
# if uploaded_files:
# # Save uploaded files
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for uploaded_file in uploaded_files:
# file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
# with open(file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# # Run data ingestion when files are uploaded
# data_ingestion()
# # Display UI for Q&A
# st.header("Ask a Question")
# user_question = st.text_input("Enter your question here:")
# if user_question:
# answer = process_answer(user_question)
# st.write(answer)
# else:
# st.sidebar.info("Upload PDF files to get started!")
# -------
import os
import logging
import math
import streamlit as st
import fitz # PyMuPDF
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Configuration
device = 'cpu'
persist_directory = "db"
uploaded_files_dir = "uploaded_files"
# Setup logging
logging.basicConfig(level=logging.INFO)
# Streamlit Page Setup
st.set_page_config(page_title="RAG Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Assistant")
# Load LLM model
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# ---------------- HELPER FUNCTIONS ---------------- #
def extract_outline_from_pdf(path):
try:
doc = fitz.open(path)
outline_text = ""
for page_num in range(len(doc)):
page = doc[page_num]
outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
return outline_text if outline_text else "No preview available."
except Exception as e:
return f"Could not preview PDF: {e}"
def data_ingestion():
try:
logging.info("Starting data ingestion")
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
documents = []
for filename in os.listdir(uploaded_files_dir):
if filename.endswith(".pdf"):
path = os.path.join(uploaded_files_dir, filename)
logging.info(f"Loading: {filename}")
try:
loader = PDFMinerLoader(path)
loaded_docs = loader.load()
for doc in loaded_docs:
if hasattr(doc, 'page_content'):
documents.append(doc)
except Exception as e:
logging.warning(f"Skipping {filename}: {str(e)}")
if not documents:
st.error("⚠️ No valid documents found. Check the PDF content.")
return
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = None
MAX_BATCH_SIZE = 5461
for i in range(0, len(texts), MAX_BATCH_SIZE):
batch = texts[i:i + MAX_BATCH_SIZE]
if db is None:
db = Chroma.from_documents(batch, embeddings, persist_directory=persist_directory)
else:
db.add_documents(batch)
db.persist()
logging.info("Data ingestion completed.")
except Exception as e:
logging.error(f"Ingestion error: {e}")
st.error(f"Ingestion failed: {e}")
def llm_pipeline():
pipe = pipeline(
'text2text-generation',
model=base_model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
device=device
)
return HuggingFacePipeline(pipeline=pipe)
def qa_llm():
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriever = db.as_retriever()
return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
def process_answer(user_question):
try:
qa = qa_llm()
prompt = f"""
You are a helpful and accurate RAG-based chatbot. Your role is to analyze the content from uploaded PDF documents and
provide informative and detailed answers to any questions asked by the user. Use the uploaded knowledge to answer precisely.
Question: {user_question}
"""
output = qa({"query": prompt})
return output['result']
except Exception as e:
logging.error(f"QA failed: {e}")
return "❌ Could not generate a valid answer."
# ---------------- STREAMLIT UI ---------------- #
# Sidebar Upload
st.sidebar.header("πŸ“€ Upload PDF Files")
uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
if uploaded_files:
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
for file in uploaded_files:
path = os.path.join(uploaded_files_dir, file.name)
with open(path, "wb") as f:
f.write(file.getbuffer())
st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
# Display previews
st.subheader("πŸ“„ Uploaded PDF Previews")
for file in uploaded_files:
with st.expander(file.name):
st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
# Trigger ingestion
with st.spinner("πŸ”„ Ingesting uploaded documents..."):
data_ingestion()
# Ask a question
st.header("❓ Ask a Question from Your Documents")
user_input = st.text_input("Enter your question:")
if user_input:
with st.spinner("πŸ’¬ Generating response..."):
response = process_answer(user_input)
st.success(response)
else:
st.sidebar.info("Upload PDFs to begin your QA journey.")