Spaces:
Sleeping
Sleeping
File size: 11,803 Bytes
3875c87 709f6b7 3875c87 709f6b7 6ccf2cb 709f6b7 28c38fd 709f6b7 3875c87 709f6b7 3875c87 6ccf2cb 3875c87 6ccf2cb 3875c87 709f6b7 3875c87 51ac619 709f6b7 3875c87 51ac619 3875c87 709f6b7 3875c87 51ac619 3875c87 709f6b7 51ac619 3875c87 709f6b7 3875c87 709f6b7 3875c87 709f6b7 3875c87 709f6b7 3875c87 709f6b7 3875c87 709f6b7 3875c87 709f6b7 28c38fd 3875c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# import os
# import logging
# import streamlit as st
# import torch
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# # Paths and model
# PERSIST_DIRECTORY = "db"
# UPLOAD_FOLDER = "uploaded_files"
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# CHECKPOINT = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT)
# device = 0 if torch.cuda.is_available() else -1
# def ingest_data():
# try:
# st.info("π Ingesting documents...")
# docs = []
# for file_name in os.listdir(UPLOAD_FOLDER):
# if file_name.endswith(".pdf"):
# path = os.path.join(UPLOAD_FOLDER, file_name)
# loader = PDFMinerLoader(path)
# loaded_docs = loader.load()
# docs.extend(loaded_docs)
# if not docs:
# st.error("No valid PDFs found.")
# return
# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = splitter.split_documents(docs)
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma.from_documents(texts, embeddings, persist_directory=PERSIST_DIRECTORY)
# db.persist()
# st.success("β
Ingestion successful!")
# except Exception as e:
# logging.error(f"Ingestion error: {str(e)}")
# st.error(f"Ingestion error: {str(e)}")
# def get_qa_chain():
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# vectordb = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings)
# retriever = vectordb.as_retriever()
# pipe = pipeline(
# "text2text-generation",
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device,
# )
# llm = HuggingFacePipeline(pipeline=pipe)
# qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# return qa_chain
# def main():
# st.set_page_config(page_title="CA Audit QA Chatbot", layout="wide")
# st.title("π CA Audit QA Assistant")
# with st.sidebar:
# st.header("π€ Upload Audit PDFs")
# uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
# if uploaded_file is not None:
# file_path = os.path.join(UPLOAD_FOLDER, uploaded_file.name)
# with open(file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.success(f"{uploaded_file.name} uploaded.")
# ingest_data()
# query = st.text_input("β Ask an audit-related question:")
# if st.button("π Get Answer") and query:
# st.info("Generating answer...")
# qa_chain = get_qa_chain()
# prompt = f"""
# You are an AI assistant helping Chartered Accountants (CAs) in auditing.
# Provide accurate, concise answers based on the uploaded documents.
# Question: {query}
# """
# result = qa_chain({"query": prompt})
# st.success("β
Answer:")
# st.write(result["result"])
# if __name__ == "__main__":
# main()
import os
import logging
import math
import streamlit as st
import fitz # PyMuPDF
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Set up logging
logging.basicConfig(level=logging.INFO)
# Define global variables
device = 'cpu'
persist_directory = "db"
uploaded_files_dir = "uploaded_files"
# Streamlit app configuration
st.set_page_config(page_title="Audit Assistant", layout="wide")
st.title("Audit Assistant")
# Load the model
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Helper Functions
def extract_text_from_pdf(file_path):
"""Extract text from a PDF using PyMuPDF (fitz)."""
try:
doc = fitz.open(file_path)
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text("text")
return text
except Exception as e:
logging.error(f"Error reading PDF {file_path}: {e}")
return None
def data_ingestion():
"""Function to load PDFs and create embeddings with improved error handling and efficiency."""
try:
logging.info("Starting data ingestion")
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
documents = []
for filename in os.listdir(uploaded_files_dir):
if filename.endswith(".pdf"):
file_path = os.path.join(uploaded_files_dir, filename)
logging.info(f"Processing file: {file_path}")
loader = PDFMinerLoader(file_path)
loaded_docs = loader.load()
# Check the structure of the loaded docs to ensure it has the correct format
for doc in loaded_docs:
if isinstance(doc, dict): # If the document is a dictionary
# Extract text content if present in the dictionary
if 'content' in doc:
doc_content = doc['content']
else:
logging.warning(f"Skipping invalid document structure in {file_path}")
continue
elif hasattr(doc, 'page_content'): # If the document is a proper object
doc_content = doc.page_content
else:
logging.warning(f"Skipping invalid document structure in {file_path}")
continue
# If document content exists, add it to the documents list
if doc_content and len(doc_content.strip()) > 0:
documents.append(doc)
else:
logging.warning(f"Skipping empty or invalid document: {file_path}")
if not documents:
logging.error("No valid documents found to process.")
return
logging.info(f"Total valid documents: {len(documents)}")
# Split documents into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
logging.info(f"Total text chunks created: {len(texts)}")
if not texts:
logging.error("No valid text chunks to create embeddings.")
return
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Proceed to split and embed the documents
MAX_BATCH_SIZE = 5461
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
db = None
for i in range(total_batches):
batch_start = i * MAX_BATCH_SIZE
batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
text_batch = texts[batch_start:batch_end]
logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
if db is None:
db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
else:
db.add_documents(text_batch)
db.persist()
logging.info("Data ingestion completed successfully")
except Exception as e:
logging.error(f"Error during data ingestion: {str(e)}")
raise
def llm_pipeline():
"""Set up the language model pipeline."""
logging.info("Setting up LLM pipeline")
pipe = pipeline(
'text2text-generation',
model=base_model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
device=device
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("LLM pipeline setup complete")
return local_llm
def qa_llm():
"""Set up the question-answering chain."""
logging.info("Setting up QA model")
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriever = db.as_retriever() # Set up the retriever for the vector store
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
logging.info("QA model setup complete")
return qa
def process_answer(user_question):
"""Generate an answer to the userβs question."""
try:
logging.info("Processing user question")
qa = qa_llm()
tailored_prompt = f"""
You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
and accounting standards based on the provided PDF documents.
Please respond effectively and refer to the relevant standards and policies whenever applicable.
User question: {user_question}
"""
generated_text = qa({"query": tailored_prompt})
answer = generated_text['result']
if "not provide" in answer or "no information" in answer:
return "The document does not provide sufficient information to answer your question."
logging.info("Answer generated successfully")
return answer
except Exception as e:
logging.error(f"Error during answer generation: {str(e)}")
return "Error processing the question."
# Streamlit UI Setup
st.sidebar.header("File Upload")
uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
if uploaded_files:
# Save uploaded files
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
for uploaded_file in uploaded_files:
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# Run data ingestion when files are uploaded
data_ingestion()
# Display UI for Q&A
st.header("Ask a Question")
user_question = st.text_input("Enter your question here:")
if user_question:
answer = process_answer(user_question)
st.write(answer)
else:
st.sidebar.info("Upload PDF files to get started!")
|