Spaces:
Sleeping
Sleeping
File size: 17,690 Bytes
b73a4fc 504f37b 38fd181 e58707f 38fd181 e58707f b73a4fc bfe6692 b73a4fc e58707f 1ce1659 38fd181 da7dbd0 b73a4fc 38fd181 e58707f bfe6692 b73a4fc 38fd181 62dc9d8 38fd181 bfe6692 62dc9d8 a5e8d12 38fd181 7e6ffb4 38fd181 b73a4fc 38fd181 b73a4fc 00b1038 b73a4fc da7dbd0 1ce1659 00b1038 b73a4fc bfe6692 62dc9d8 b73a4fc bfe6692 b73a4fc e58707f b73a4fc 62dc9d8 e58707f bfe6692 a5e8d12 bfe6692 b73a4fc e58707f b73a4fc 62dc9d8 b73a4fc 62dc9d8 b73a4fc 62dc9d8 b73a4fc 62dc9d8 bfe6692 00b1038 e58707f 62dc9d8 b73a4fc e58707f b73a4fc e58707f b73a4fc bfe6692 62dc9d8 00b1038 0827f9d b73a4fc e58707f 62dc9d8 b73a4fc a5e8d12 62dc9d8 e58707f 00b1038 b73a4fc 62dc9d8 a5e8d12 b73a4fc bfe6692 e58707f bfe6692 7e6ffb4 504f37b b73a4fc 504f37b e58707f b73a4fc 504f37b e58707f a5e8d12 e58707f 7e6ffb4 b73a4fc a5e8d12 bfe6692 a5e8d12 bfe6692 7e6ffb4 38fd181 504f37b b73a4fc a5e8d12 62dc9d8 7e6ffb4 62dc9d8 a5e8d12 38fd181 a5e8d12 7e6ffb4 a5e8d12 504f37b e58707f b73a4fc e58707f b73a4fc 7e6ffb4 62dc9d8 b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f b73a4fc 62dc9d8 e58707f bfe6692 e58707f b73a4fc a5e8d12 7e6ffb4 e58707f b73a4fc 62dc9d8 b73a4fc 62dc9d8 e58707f b73a4fc e58707f 00b1038 e58707f 62dc9d8 bfe6692 00b1038 e58707f b73a4fc 62dc9d8 b73a4fc 62dc9d8 bfe6692 62dc9d8 b73a4fc 62dc9d8 e58707f 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 7e6ffb4 b73a4fc e58707f b73a4fc e58707f b73a4fc da7dbd0 e58707f b73a4fc da7dbd0 e58707f da7dbd0 38fd181 b73a4fc 38fd181 da7dbd0 62dc9d8 e58707f da7dbd0 38fd181 b73a4fc 38fd181 da7dbd0 62dc9d8 e58707f da7dbd0 38fd181 b73a4fc da7dbd0 a6b0abd e58707f da7dbd0 38fd181 b73a4fc e58707f 1ce1659 b73a4fc 62dc9d8 e58707f b73a4fc bfe6692 b73a4fc e58707f b73a4fc e58707f 62dc9d8 bfe6692 b73a4fc e58707f b73a4fc e58707f b73a4fc e58707f 504f37b e58707f 504f37b 62dc9d8 38fd181 e58707f b73a4fc a5e8d12 b73a4fc a5e8d12 b73a4fc bfe6692 38fd181 b73a4fc d952fbe b73a4fc d952fbe b73a4fc d952fbe b73a4fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
"""
Author: Khanh Phan
Date: 2024-12-04
"""
import pandas as pd
from src.application.config import (
MIN_RATIO_PARAPHRASE_NUM,
PARAPHRASE_THRESHOLD,
PARAPHRASE_THRESHOLD_MACHINE,
)
from src.application.formatting_fact_checker import create_fact_checker_table
from src.application.formatting_governor import create_governor_table
from src.application.formatting_ordinary_user import create_ordinary_user_table
from src.application.image.image import ImageDetector
from src.application.image.image_detection import (
detect_image_by_ai_model,
detect_image_by_reverse_search,
detect_image_from_news_image,
)
from src.application.text.entity import highlight_entities
from src.application.text.helper import (
postprocess_label,
split_into_paragraphs,
)
from src.application.text.model_detection import (
detect_text_by_ai_model,
predict_generation_model,
)
from src.application.text.search_detection import find_sentence_source
from src.application.text.text import TextDetector
class NewsVerification:
def __init__(self):
"""
Initializes the NewsVerification object.
"""
self.news_text: str = ""
self.news_title: str = ""
self.news_content: str = ""
self.news_image: str = ""
self.text = TextDetector()
self.image = ImageDetector()
self.news_prediction_label: str = ""
self.news_prediction_score: float = -1
# news' urls to find img
self.found_img_url: list[str] = []
# Analyzed results
self.aligned_sentences_df: pd.DataFrame = pd.DataFrame(
columns=[
"input",
"source",
"label",
"similarity",
"paraphrase",
"url",
# "entities",
],
)
def load_news(self, news_title: str, news_content: str, news_image: str):
"""
Loads news data into the object's attributes.
Args:
news_title (str): The title of the news article.
news_content (str): The content of the news article.
news_image (str): The url of image in news article.
"""
# Combine title and content for a full text representation.
self.news_text = news_title + "\n\n" + news_content
# if not isinstance(news_title, str) or not isinstance(
# news_content,
# str,
# ):
# raise TypeError("News title and content must be strings.")
# if not isinstance(news_image, str) or news_image is not None:
# Warning("News image must be a string.")
self.news_title = news_title
self.news_content = news_content
self.news_image = news_image
self.text.input = self.news_text
self.image.input = news_image
def group_by_url(self):
"""
Groups aligned sentences by URL
Then, concatenates text the 'input' and 'source' text for each group.
"""
def concat_text(series):
"""
Concatenates the elements of a pd.Series into a single string.
"""
return " ".join(
series.astype(str).tolist(),
) # Handle mixed data types and NaNs
# Group sentences by URL and concatenate 'input' and 'source' text.
self.text.grouped_url_df = (
self.aligned_sentences_df.groupby("url")
.agg(
{
"input": concat_text,
"source": concat_text,
},
)
.reset_index()
) # Reset index to make 'url' a regular column
# Add new columns for label and score
self.text.grouped_url_df["label"] = None
self.text.grouped_url_df["score"] = None
print(f"aligned_sentences_df:\n {self.aligned_sentences_df}")
def determine_text_origin_by_url(self):
"""
Determines the text origin for each URL group.
"""
for index, row in self.text.grouped_url_df.iterrows():
# Verify text origin using URL-based verification.
label, score = self.verify_text(row["url"])
# If URL-based verification returns 'UNKNOWN', use AI detection
if label == "UNKNOWN":
# Concatenate text from "input" column in sentence_df
text = " ".join(row["input"])
# Detect text origin using an AI model.
label, score = detect_text_by_ai_model(text)
print(f"labels = {label}")
self.text.grouped_url_df.at[index, "label"] = label
self.text.grouped_url_df.at[index, "score"] = score
def determine_text_origin(self):
"""
Determines the origin of the input text by analyzing
its sources and applying AI detection models.
This method groups sentences by their source URLs,
applies verification and AI detection, and then determines
an overall label and score for the input text.
"""
# Find the text URLs associated with the input text
self.find_text_source()
# Group sentences by URL and concatenate 'input' and 'source' text.
self.group_by_url()
# Determine the text origin for each URL group
self.determine_text_origin_by_url()
# Determine the overall label and score for the entire input text.
if not self.text.grouped_url_df.empty:
# Check for 'gpt-4o' labels in the grouped URLs.
machine_label = self.text.grouped_url_df[
self.text.grouped_url_df["label"].str.contains(
"gpt-4o",
case=False,
na=False,
)
]
print(f" machine_label = {machine_label}")
if not machine_label.empty:
# If 'gpt-4o' labels are found, post-process and assign.
labels = machine_label["label"].tolist()
label = postprocess_label(labels)
# labels = " and ".join(machine_label["label"].tolist())
# label = remove_duplicate_words(label)
self.text.prediction_label[0] = label
self.text.prediction_score[0] = machine_label["score"].mean()
else:
# If no 'gpt-4o' labels, assign for 'HUMAN' labels.
machine_label = self.aligned_sentences_df[
self.aligned_sentences_df["label"] == "HUMAN"
]
self.text.prediction_label[0] = "HUMAN"
self.text.prediction_score[0] = self.text.grouped_url_df[
"score"
].mean()
else:
# If no found URLs, use AI detection on the entire input text.
print("No source found in the input text")
text = " ".join(self.aligned_sentences_df["input"].tolist())
# Detect text origin using an AI model.
label, score = detect_text_by_ai_model(text)
self.text.prediction_label[0] = label
self.text.prediction_score[0] = score
def find_text_source(self):
"""
Determines the origin of the given text based on paraphrasing
detection and human authorship analysis.
1. Splits the input news text into sentences,
2. Searches for sources for each sentence
3. Updates the aligned_sentences_df with the found sources.
"""
print("CHECK TEXT:")
print("\tFrom search engine:")
input_paragraphs = split_into_paragraphs(self.news_text)
# Initialize an empty DataFrame if it doesn't exist,
# otherwise extend it.
if (
not hasattr(self, "aligned_sentences_df")
or self.aligned_sentences_df is None
):
self.aligned_sentences_df = pd.DataFrame(
columns=[
"input",
"source",
"label",
"similarity",
"paraphrase",
"url",
"entities",
],
)
# Setup DataFrame for input_sentences
for _ in range(len(input_paragraphs)):
self.aligned_sentences_df = pd.concat(
[
self.aligned_sentences_df,
pd.DataFrame(
[
{
"input": None,
"source": None,
"label": None,
"similarity": None,
"paraphrase": None,
"url": None,
"entities": None,
},
],
),
],
ignore_index=True,
)
# Find a source for each sentence
for index, _ in enumerate(input_paragraphs):
similarity = self.aligned_sentences_df.loc[index, "similarity"]
if similarity is not None:
if similarity > PARAPHRASE_THRESHOLD_MACHINE:
continue
print(f"\n-------index = {index}-------")
print(f"current_text = {input_paragraphs[index]}\n")
self.aligned_sentences_df, img_urls = find_sentence_source(
input_paragraphs,
index,
self.aligned_sentences_df,
)
# Initialize found_img_url if it does not exist.
if not hasattr(self, "found_img_url"):
self.found_img_url = []
self.found_img_url.extend(img_urls)
def verify_text(self, url):
"""
Verifies the text origin based on similarity scores and labels
associated with a given URL.
1. Filters sentences by URL and similarity score,
2. Determines if the text is likely generated by a machine or a human.
3. Calculates an average similarity score.
Args:
url (str): The URL to filter sentences by.
Returns:
tuple: A
- Label ("MACHINE", "HUMAN", or "UNKNOWN")
- Score
"""
label = "UNKNOWN"
score = 0
# calculate the average similarity when the similary score
# in each row of sentences_df is higher than 0.8
# Filter sentences by URL.
filtered_by_url = self.aligned_sentences_df[
self.aligned_sentences_df["url"] == url
]
# Filter sentences by similarity score (> PARAPHRASE_THRESHOLD).
filtered_by_similarity = filtered_by_url[
filtered_by_url["similarity"] > PARAPHRASE_THRESHOLD
]
# Check if a ratio of remaining filtering-sentences is more than 50%.
if (
len(filtered_by_similarity) / len(filtered_by_url)
> MIN_RATIO_PARAPHRASE_NUM
):
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
contains_machine = (
filtered_by_similarity["label"]
.str.contains(
"MACHINE",
case=False,
na=False,
)
.any()
)
print(f"contain_machine = \n{contains_machine}")
# TODO: integrate with determine_text_origin
if contains_machine:
# If "MACHINE" label is present, set label and calculate score.
machine_rows = filtered_by_similarity[
filtered_by_similarity["label"].str.contains(
"MACHINE",
case=False,
na=False,
)
]
generated_model, _ = predict_generation_model(self.news_text)
label = f"Partially generated by {generated_model}"
score = machine_rows["similarity"].mean()
else:
# If no "MACHINE" label,
# assign "HUMAN" label and calculate score.
label = "HUMAN"
human_rows = filtered_by_similarity[
filtered_by_similarity["label"].str.contains(
"HUMAN",
case=False,
na=False,
)
]
score = human_rows["similarity"].mean()
return label, score
def determine_image_origin(self):
"""
Determines the origin of the news image using 3 detection methods.
1. Matching against previously found image URLs.
2. Reverse image search.
3. AI-based image detection.
If none of these methods succeed, the image origin is "UNKNOWN".
"""
print("CHECK IMAGE:")
# Handle the case where no image is provided.
if self.news_image is None:
self.image.prediction_label = "UNKNOWN"
self.image.prediction_score = 0.0
self.image.referent_url = None
return
# Attempt to match the image against previously found image URLs.
print("\tFrom found image URLs...")
matched_url, similarity = detect_image_from_news_image(
self.news_image,
self.found_img_url,
)
if matched_url is not None:
print(f"matched image: {matched_url}\nsimilarity: {similarity}\n")
self.image.prediction_label = "HUMAN"
self.image.prediction_score = similarity
self.image.referent_url = matched_url
return
# Attempt to find the image origin using reverse image search.
print("\tFrom reverse image search...")
matched_url, similarity = detect_image_by_reverse_search(
self.news_image,
)
if matched_url is not None:
print(f"matched image: {matched_url}\tScore: {similarity}%\n")
self.image.prediction_label = "HUMAN"
self.image.prediction_score = similarity
self.image.referent_url = matched_url
return
# Attempt to detect the image origin using an AI model.
print("\tFrom an AI model...")
detected_label, score = detect_image_by_ai_model(self.news_image)
if detected_label:
print(f"detected_label: {detected_label} ({score})")
self.image.prediction_label = detected_label
self.image.prediction_score = score
self.image.referent_url = None
return
# If all detection methods fail, mark the image origin as "UNKNOWN".
self.image.prediction_label = "UNKNOWN"
self.image.prediction_score = 50
self.image.referent_url = None
def determine_origin(self):
"""
Determine origins by analyzing the news text and image.
"""
if self.news_text != "":
self.determine_text_origin()
if self.news_image != "":
self.determine_image_origin()
# Handle entity recognition and processing.
self.handle_entities()
def generate_report(self) -> tuple[str, str, str]:
"""
Generates reports tailored for different user roles
(ordinary users, fact checkers, governors).
Returns:
tuple: A tuple containing three html-formatted reports:
- ordinary_user_table: Report for ordinary users.
- fact_checker_table: Report for fact checkers.
- governor_table: Report for governors.
"""
ordinary_user_table = create_ordinary_user_table(
self.aligned_sentences_df,
self.text,
self.image,
)
fact_checker_table = create_fact_checker_table(
self.aligned_sentences_df,
self.text,
self.image,
)
governor_table = create_governor_table(
self.aligned_sentences_df,
self.text,
self.image,
)
return ordinary_user_table, fact_checker_table, governor_table
def handle_entities(self):
"""
Highlights and assigns entities with colors to aligned sentences
based on grouped URLs.
For each grouped URL:
1. Highlights entities in the input and source text
2. Then assigns these highlighted entities to the corresponding
sentences in the aligned sentences DataFrame.
"""
entities_with_colors = []
for index, row in self.text.grouped_url_df.iterrows():
# Get entity-words (in pair) with colors
entities_with_colors = highlight_entities(
row["input"],
row["source"],
)
# Assign the highlighted entities to the corresponding sentences
# in aligned_sentences_df.
for index, sentence in self.aligned_sentences_df.iterrows():
if sentence["url"] == row["url"]:
# Use .at to modify the DataFrame efficiently.
self.aligned_sentences_df.at[index, "entities"] = (
entities_with_colors
)
def get_text_urls(self) -> set:
"""
Returns a set of unique URLs referenced in the text analysis.
Returns:
set: A set containing the unique URLs referenced in the text.
"""
return set(self.text_referent_url)
|