Spaces:
Running
Running
Commit
·
e58707f
1
Parent(s):
b73a4fc
refactor
Browse files- src/application/config.py +1 -1
- src/application/content_detection.py +105 -526
- src/application/content_generation.py +2 -1
- src/application/formatting.py +17 -9
- src/application/formatting_fact_checker.py +238 -0
- src/application/formatting_governor.py +165 -0
- src/application/formatting_ordinary_user.py +33 -29
- src/application/image/image.py +5 -0
- src/application/text/helper.py +23 -13
- src/application/text/search_detection.py +2 -1
- src/application/text/text.py +14 -0
src/application/config.py
CHANGED
@@ -88,4 +88,4 @@ ENTITY_BRIGHTNESS = 0.75 # color's brightness.
|
|
88 |
|
89 |
|
90 |
# HTML formatting
|
91 |
-
WORD_BREAK = "word-break: break-all;"
|
|
|
88 |
|
89 |
|
90 |
# HTML formatting
|
91 |
+
WORD_BREAK = "word-break: break-all;"
|
src/application/content_detection.py
CHANGED
@@ -5,19 +5,22 @@ Date: 2024-12-04
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
-
from src.application.config import
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from src.application.image.image_detection import (
|
11 |
detect_image_by_ai_model,
|
12 |
detect_image_by_reverse_search,
|
13 |
detect_image_from_news_image,
|
14 |
)
|
15 |
-
from src.application.text.entity import
|
16 |
-
apply_highlight,
|
17 |
-
highlight_entities,
|
18 |
-
)
|
19 |
from src.application.text.helper import (
|
20 |
-
extract_equal_text,
|
21 |
postprocess_label,
|
22 |
split_into_paragraphs,
|
23 |
)
|
@@ -26,6 +29,7 @@ from src.application.text.model_detection import (
|
|
26 |
predict_generation_model,
|
27 |
)
|
28 |
from src.application.text.search_detection import find_sentence_source
|
|
|
29 |
|
30 |
|
31 |
class NewsVerification:
|
@@ -38,12 +42,8 @@ class NewsVerification:
|
|
38 |
self.news_content: str = ""
|
39 |
self.news_image: str = ""
|
40 |
|
41 |
-
self.
|
42 |
-
self.
|
43 |
-
|
44 |
-
self.image_prediction_label: list[str] = ["UNKNOWN"]
|
45 |
-
self.image_prediction_score: list[str] = [0.0]
|
46 |
-
self.image_referent_url: list[str] = []
|
47 |
|
48 |
self.news_prediction_label: str = ""
|
49 |
self.news_prediction_score: float = -1
|
@@ -63,12 +63,6 @@ class NewsVerification:
|
|
63 |
# "entities",
|
64 |
],
|
65 |
)
|
66 |
-
self.grouped_url_df: pd.DataFrame = pd.DataFrame()
|
67 |
-
|
68 |
-
# For formatting ouput tables
|
69 |
-
self.ordinary_user_table: list = []
|
70 |
-
self.fact_checker_table: list = []
|
71 |
-
self.governor_table: list = []
|
72 |
|
73 |
def load_news(self, news_title: str, news_content: str, news_image: str):
|
74 |
"""
|
@@ -111,7 +105,7 @@ class NewsVerification:
|
|
111 |
) # Handle mixed data types and NaNs
|
112 |
|
113 |
# Group sentences by URL and concatenate 'input' and 'source' text.
|
114 |
-
self.grouped_url_df = (
|
115 |
self.aligned_sentences_df.groupby("url")
|
116 |
.agg(
|
117 |
{
|
@@ -123,8 +117,8 @@ class NewsVerification:
|
|
123 |
) # Reset index to make 'url' a regular column
|
124 |
|
125 |
# Add new columns for label and score
|
126 |
-
self.grouped_url_df["label"] = None
|
127 |
-
self.grouped_url_df["score"] = None
|
128 |
|
129 |
print(f"aligned_sentences_df:\n {self.aligned_sentences_df}")
|
130 |
|
@@ -132,7 +126,7 @@ class NewsVerification:
|
|
132 |
"""
|
133 |
Determines the text origin for each URL group.
|
134 |
"""
|
135 |
-
for index, row in self.grouped_url_df.iterrows():
|
136 |
# Verify text origin using URL-based verification.
|
137 |
label, score = self.verify_text(row["url"])
|
138 |
|
@@ -144,8 +138,8 @@ class NewsVerification:
|
|
144 |
# Detect text origin using an AI model.
|
145 |
label, score = detect_text_by_ai_model(text)
|
146 |
|
147 |
-
self.grouped_url_df.at[index, "label"] = label
|
148 |
-
self.grouped_url_df.at[index, "score"] = score
|
149 |
|
150 |
def determine_text_origin(self):
|
151 |
"""
|
@@ -166,10 +160,10 @@ class NewsVerification:
|
|
166 |
self.determine_text_origin_by_url()
|
167 |
|
168 |
# Determine the overall label and score for the entire input text.
|
169 |
-
if not self.grouped_url_df.empty:
|
170 |
# Check for 'gpt-4o' labels in the grouped URLs.
|
171 |
-
machine_label = self.grouped_url_df[
|
172 |
-
self.grouped_url_df["label"].str.contains(
|
173 |
"gpt-4o",
|
174 |
case=False,
|
175 |
na=False,
|
@@ -183,15 +177,15 @@ class NewsVerification:
|
|
183 |
|
184 |
# labels = " and ".join(machine_label["label"].tolist())
|
185 |
# label = remove_duplicate_words(label)
|
186 |
-
self.
|
187 |
-
self.
|
188 |
else:
|
189 |
# If no 'gpt-4o' labels, assign for 'HUMAN' labels.
|
190 |
machine_label = self.aligned_sentences_df[
|
191 |
self.aligned_sentences_df["label"] == "HUMAN"
|
192 |
]
|
193 |
-
self.
|
194 |
-
self.
|
195 |
else:
|
196 |
# If no found URLs, use AI detection on the entire input text.
|
197 |
print("No source found in the input text")
|
@@ -199,34 +193,40 @@ class NewsVerification:
|
|
199 |
|
200 |
# Detect text origin using an AI model.
|
201 |
label, score = detect_text_by_ai_model(text)
|
202 |
-
self.
|
203 |
-
self.
|
204 |
|
205 |
def find_text_source(self):
|
206 |
"""
|
207 |
Determines the origin of the given text based on paraphrasing
|
208 |
detection and human authorship analysis.
|
209 |
|
210 |
-
1. Splits the input news text into sentences,
|
211 |
2. Searches for sources for each sentence
|
212 |
3. Updates the aligned_sentences_df with the found sources.
|
213 |
"""
|
214 |
print("CHECK TEXT:")
|
215 |
print("\tFrom search engine:")
|
216 |
-
|
217 |
input_paragraphs = split_into_paragraphs(self.news_text)
|
218 |
-
|
219 |
-
# Initialize an empty DataFrame if it doesn't exist,
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
# Setup DataFrame for input_sentences
|
232 |
for _ in range(len(input_paragraphs)):
|
@@ -265,19 +265,19 @@ class NewsVerification:
|
|
265 |
index,
|
266 |
self.aligned_sentences_df,
|
267 |
)
|
268 |
-
|
269 |
# Initialize found_img_url if it does not exist.
|
270 |
-
if not hasattr(self,
|
271 |
self.found_img_url = []
|
272 |
self.found_img_url.extend(img_urls)
|
273 |
|
274 |
def verify_text(self, url):
|
275 |
"""
|
276 |
-
Verifies the text origin based on similarity scores and labels
|
277 |
associated with a given URL.
|
278 |
|
279 |
-
1. Filters sentences by URL and similarity score,
|
280 |
-
2. Determines if the text is likely generated by a machine or a human.
|
281 |
3. Calculates an average similarity score.
|
282 |
|
283 |
Args:
|
@@ -285,27 +285,30 @@ class NewsVerification:
|
|
285 |
|
286 |
Returns:
|
287 |
tuple: A
|
288 |
-
- Label ("MACHINE", "HUMAN", or "UNKNOWN")
|
289 |
- Score
|
290 |
"""
|
291 |
label = "UNKNOWN"
|
292 |
score = 0
|
293 |
-
|
294 |
# calculate the average similarity when the similary score
|
295 |
# in each row of sentences_df is higher than 0.8
|
296 |
-
|
297 |
# Filter sentences by URL.
|
298 |
filtered_by_url = self.aligned_sentences_df[
|
299 |
self.aligned_sentences_df["url"] == url
|
300 |
]
|
301 |
-
|
302 |
# Filter sentences by similarity score (> PARAPHRASE_THRESHOLD).
|
303 |
filtered_by_similarity = filtered_by_url[
|
304 |
filtered_by_url["similarity"] > PARAPHRASE_THRESHOLD
|
305 |
]
|
306 |
-
|
307 |
# Check if a ratio of remaining filtering-sentences is more than 50%.
|
308 |
-
if
|
|
|
|
|
|
|
309 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
310 |
contains_machine = (
|
311 |
filtered_by_similarity["label"]
|
@@ -316,7 +319,7 @@ class NewsVerification:
|
|
316 |
)
|
317 |
.any()
|
318 |
)
|
319 |
-
|
320 |
# TODO: integrate with determine_text_origin
|
321 |
if contains_machine:
|
322 |
# If "MACHINE" label is present, set label and calculate score.
|
@@ -331,7 +334,8 @@ class NewsVerification:
|
|
331 |
label = f"Partially generated by {generated_model}"
|
332 |
score = machine_rows["similarity"].mean()
|
333 |
else:
|
334 |
-
# If no "MACHINE" label,
|
|
|
335 |
label = "HUMAN"
|
336 |
human_rows = filtered_by_similarity[
|
337 |
filtered_by_similarity["label"].str.contains(
|
@@ -346,21 +350,21 @@ class NewsVerification:
|
|
346 |
|
347 |
def determine_image_origin(self):
|
348 |
"""
|
349 |
-
Determines the origin of the news image using
|
350 |
|
351 |
1. Matching against previously found image URLs.
|
352 |
2. Reverse image search.
|
353 |
3. AI-based image detection.
|
354 |
|
355 |
-
If none of these methods succeed, the image origin is
|
356 |
"""
|
357 |
print("CHECK IMAGE:")
|
358 |
-
|
359 |
# Handle the case where no image is provided.
|
360 |
if self.news_image is None:
|
361 |
-
self.
|
362 |
-
self.
|
363 |
-
self.
|
364 |
return
|
365 |
|
366 |
# Attempt to match the image against previously found image URLs.
|
@@ -371,9 +375,9 @@ class NewsVerification:
|
|
371 |
)
|
372 |
if matched_url is not None:
|
373 |
print(f"matched image: {matched_url}\nsimilarity: {similarity}\n")
|
374 |
-
self.
|
375 |
-
self.
|
376 |
-
self.
|
377 |
return
|
378 |
|
379 |
# Attempt to find the image origin using reverse image search.
|
@@ -383,9 +387,9 @@ class NewsVerification:
|
|
383 |
)
|
384 |
if matched_url is not None:
|
385 |
print(f"matched image: {matched_url}\tScore: {similarity}%\n")
|
386 |
-
self.
|
387 |
-
self.
|
388 |
-
self.
|
389 |
return
|
390 |
|
391 |
# Attempt to detect the image origin using an AI model.
|
@@ -393,15 +397,15 @@ class NewsVerification:
|
|
393 |
detected_label, score = detect_image_by_ai_model(self.news_image)
|
394 |
if detected_label:
|
395 |
print(f"detected_label: {detected_label} ({score})")
|
396 |
-
self.
|
397 |
-
self.
|
398 |
-
self.
|
399 |
return
|
400 |
|
401 |
# If all detection methods fail, mark the image origin as "UNKNOWN".
|
402 |
-
self.
|
403 |
-
self.
|
404 |
-
self.
|
405 |
|
406 |
def determine_origin(self):
|
407 |
"""
|
@@ -411,13 +415,13 @@ class NewsVerification:
|
|
411 |
self.determine_text_origin()
|
412 |
if self.news_image != "":
|
413 |
self.determine_image_origin()
|
414 |
-
|
415 |
# Handle entity recognition and processing.
|
416 |
self.handle_entities()
|
417 |
|
418 |
def generate_report(self) -> tuple[str, str, str]:
|
419 |
"""
|
420 |
-
Generates reports tailored for different user roles
|
421 |
(ordinary users, fact checkers, governors).
|
422 |
|
423 |
Returns:
|
@@ -426,9 +430,21 @@ class NewsVerification:
|
|
426 |
- fact_checker_table: Report for fact checkers.
|
427 |
- governor_table: Report for governors.
|
428 |
"""
|
429 |
-
ordinary_user_table =
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
return ordinary_user_table, fact_checker_table, governor_table
|
434 |
|
@@ -436,22 +452,22 @@ class NewsVerification:
|
|
436 |
"""
|
437 |
Highlights and assigns entities with colors to aligned sentences
|
438 |
based on grouped URLs.
|
439 |
-
|
440 |
For each grouped URL:
|
441 |
1. Highlights entities in the input and source text
|
442 |
-
2. Then assigns these highlighted entities to the corresponding
|
443 |
sentences in the aligned sentences DataFrame.
|
444 |
"""
|
445 |
-
|
446 |
entities_with_colors = []
|
447 |
-
for index, row in self.grouped_url_df.iterrows():
|
448 |
# Get entity-words (in pair) with colors
|
449 |
entities_with_colors = highlight_entities(
|
450 |
row["input"],
|
451 |
row["source"],
|
452 |
)
|
453 |
|
454 |
-
# Assign the highlighted entities to the corresponding sentences
|
455 |
# in aligned_sentences_df.
|
456 |
for index, sentence in self.aligned_sentences_df.iterrows():
|
457 |
if sentence["url"] == row["url"]:
|
@@ -468,440 +484,3 @@ class NewsVerification:
|
|
468 |
set: A set containing the unique URLs referenced in the text.
|
469 |
"""
|
470 |
return set(self.text_referent_url)
|
471 |
-
|
472 |
-
def create_fact_checker_table(self):
|
473 |
-
rows = []
|
474 |
-
rows.append(self.format_image_fact_checker_row())
|
475 |
-
|
476 |
-
for _, row in self.aligned_sentences_df.iterrows():
|
477 |
-
if row["input"] is None:
|
478 |
-
continue
|
479 |
-
|
480 |
-
if row["source"] is None:
|
481 |
-
equal_idx_1 = equal_idx_2 = []
|
482 |
-
|
483 |
-
else: # Get index of equal phrases in input and source sentences
|
484 |
-
equal_idx_1, equal_idx_2 = extract_equal_text(
|
485 |
-
row["input"],
|
486 |
-
row["source"],
|
487 |
-
)
|
488 |
-
|
489 |
-
self.fact_checker_table.append(
|
490 |
-
[
|
491 |
-
row,
|
492 |
-
equal_idx_1,
|
493 |
-
equal_idx_2,
|
494 |
-
row["entities"],
|
495 |
-
row["url"],
|
496 |
-
],
|
497 |
-
)
|
498 |
-
|
499 |
-
previous_url = None
|
500 |
-
span_row = 1
|
501 |
-
for index, row in enumerate(self.fact_checker_table):
|
502 |
-
current_url = row[4]
|
503 |
-
last_url_row = False
|
504 |
-
|
505 |
-
# First row or URL change
|
506 |
-
if index == 0 or current_url != previous_url:
|
507 |
-
first_url_row = True
|
508 |
-
previous_url = current_url
|
509 |
-
# Increase counter "span_row" when the next url is the same
|
510 |
-
while (
|
511 |
-
index + span_row < len(self.fact_checker_table)
|
512 |
-
and self.fact_checker_table[index + span_row][4]
|
513 |
-
== current_url
|
514 |
-
):
|
515 |
-
span_row += 1
|
516 |
-
|
517 |
-
else:
|
518 |
-
first_url_row = False
|
519 |
-
span_row -= 1
|
520 |
-
|
521 |
-
if span_row == 1:
|
522 |
-
last_url_row = True
|
523 |
-
|
524 |
-
formatted_row = self.format_text_fact_checker_row(
|
525 |
-
row,
|
526 |
-
first_url_row,
|
527 |
-
last_url_row,
|
528 |
-
span_row,
|
529 |
-
)
|
530 |
-
rows.append(formatted_row)
|
531 |
-
|
532 |
-
table = "\n".join(rows)
|
533 |
-
return f"""
|
534 |
-
<h5>Comparison between input news and source news:</h5>
|
535 |
-
<table border="1" style="width:100%; text-align:left;">
|
536 |
-
<col style="width: 170px;">
|
537 |
-
<col style="width: 170px;">
|
538 |
-
<col style="width: 30px;">
|
539 |
-
<col style="width: 75px;">
|
540 |
-
<thead>
|
541 |
-
<tr>
|
542 |
-
<th>Input news</th>
|
543 |
-
<th>Source (URL in Originality)</th>
|
544 |
-
<th>Forensic</th>
|
545 |
-
<th>Originality</th>
|
546 |
-
</tr>
|
547 |
-
</thead>
|
548 |
-
<tbody>
|
549 |
-
{table}
|
550 |
-
</tbody>
|
551 |
-
</table>
|
552 |
-
|
553 |
-
<style>
|
554 |
-
"""
|
555 |
-
|
556 |
-
def format_text_fact_checker_row(
|
557 |
-
self,
|
558 |
-
row,
|
559 |
-
first_url_row=True,
|
560 |
-
last_url_row=True,
|
561 |
-
span_row=1,
|
562 |
-
):
|
563 |
-
entity_count = 0
|
564 |
-
if row[0]["input"] is None:
|
565 |
-
return ""
|
566 |
-
if row[0]["source"] is not None: # source is not empty
|
567 |
-
if row[3] is not None:
|
568 |
-
# highlight entities
|
569 |
-
input_sentence, highlight_idx_input = apply_highlight(
|
570 |
-
row[0]["input"],
|
571 |
-
row[3],
|
572 |
-
"input",
|
573 |
-
)
|
574 |
-
source_sentence, highlight_idx_source = apply_highlight(
|
575 |
-
row[0]["source"],
|
576 |
-
row[3],
|
577 |
-
"source",
|
578 |
-
)
|
579 |
-
else:
|
580 |
-
input_sentence = row[0]["input"]
|
581 |
-
source_sentence = row[0]["source"]
|
582 |
-
highlight_idx_input = []
|
583 |
-
highlight_idx_source = []
|
584 |
-
|
585 |
-
if row[3] is not None:
|
586 |
-
entity_count = len(row[3])
|
587 |
-
|
588 |
-
# Color overlapping words
|
589 |
-
input_sentence = color_text(
|
590 |
-
input_sentence,
|
591 |
-
row[1],
|
592 |
-
highlight_idx_input,
|
593 |
-
) # text, index of highlight words
|
594 |
-
source_sentence = color_text(
|
595 |
-
source_sentence,
|
596 |
-
row[2],
|
597 |
-
highlight_idx_source,
|
598 |
-
) # text, index of highlight words
|
599 |
-
|
600 |
-
# Replace _ to get correct formatting
|
601 |
-
# Original one having _ for correct word counting
|
602 |
-
input_sentence = input_sentence.replace(
|
603 |
-
"span_style",
|
604 |
-
"span style",
|
605 |
-
).replace("1px_4px", "1px 4px")
|
606 |
-
source_sentence = source_sentence.replace(
|
607 |
-
"span_style",
|
608 |
-
"span style",
|
609 |
-
).replace("1px_4px", "1px 4px")
|
610 |
-
else:
|
611 |
-
input_sentence = row[0]["input"]
|
612 |
-
source_sentence = row[0]["source"]
|
613 |
-
|
614 |
-
url = row[0]["url"]
|
615 |
-
|
616 |
-
# Displayed label and score by url
|
617 |
-
filterby_url = self.grouped_url_df[self.grouped_url_df["url"] == url]
|
618 |
-
if len(filterby_url) > 0:
|
619 |
-
label = filterby_url["label"].values[0]
|
620 |
-
score = filterby_url["score"].values[0]
|
621 |
-
else:
|
622 |
-
label = self.text_prediction_label[0]
|
623 |
-
score = self.text_prediction_score[0]
|
624 |
-
|
625 |
-
# Format displayed url
|
626 |
-
source_text_url = f"""<a href="{url}">{url}</a>"""
|
627 |
-
|
628 |
-
# Format displayed entity count
|
629 |
-
entity_count_text = format_entity_count(entity_count)
|
630 |
-
|
631 |
-
border_top = "border-top: 1px solid transparent;"
|
632 |
-
border_bottom = "border-bottom: 1px solid transparent;"
|
633 |
-
word_break = "word-break: break-all;"
|
634 |
-
if first_url_row is True:
|
635 |
-
# First & Last the group: no transparent
|
636 |
-
if last_url_row is True:
|
637 |
-
return f"""
|
638 |
-
<tr>
|
639 |
-
<td>{input_sentence}</td>
|
640 |
-
<td>{source_sentence}</td>
|
641 |
-
<td rowspan="{span_row}">{label}<br>
|
642 |
-
({score * 100:.2f}%)<br><br>
|
643 |
-
{entity_count_text}</td>
|
644 |
-
<td rowspan="{span_row}"; style="{word_break}";>{source_text_url}</td>
|
645 |
-
</tr>
|
646 |
-
"""
|
647 |
-
# First row of the group: transparent bottom border
|
648 |
-
return f"""
|
649 |
-
<tr>
|
650 |
-
<td style="{border_bottom}";>{input_sentence}</td>
|
651 |
-
<td style="{border_bottom}";>{source_sentence}</td>
|
652 |
-
<td rowspan="{span_row}">{label}<br>
|
653 |
-
({score * 100:.2f}%)<br><br>
|
654 |
-
{entity_count_text}</td>
|
655 |
-
<td rowspan="{span_row}"; style="{word_break}";>{source_text_url}</td>
|
656 |
-
</tr>
|
657 |
-
"""
|
658 |
-
else:
|
659 |
-
if last_url_row is True:
|
660 |
-
# NOT First row, Last row: transparent top border
|
661 |
-
return f"""
|
662 |
-
<tr>
|
663 |
-
<td style="{border_top}";>{input_sentence}</td>
|
664 |
-
<td style="{border_top}";>{source_sentence}</td>
|
665 |
-
</tr>
|
666 |
-
"""
|
667 |
-
else:
|
668 |
-
# NOT First & NOT Last row: transparent top & bottom borders
|
669 |
-
return f"""
|
670 |
-
<tr>
|
671 |
-
<td style="{border_top} {border_bottom}";>{input_sentence}</td>
|
672 |
-
<td style="{border_top} {border_bottom}";>{source_sentence}</td>
|
673 |
-
</tr>
|
674 |
-
"""
|
675 |
-
|
676 |
-
def format_image_fact_checker_row(self):
|
677 |
-
|
678 |
-
if (
|
679 |
-
self.image_referent_url is not None
|
680 |
-
or self.image_referent_url != ""
|
681 |
-
):
|
682 |
-
source_image = f"""<img src="{self.image_referent_url}" width="100" height="150">""" # noqa: E501
|
683 |
-
source_image_url = f"""<a href="{self.image_referent_url}">{self.image_referent_url}</a>""" # noqa: E501
|
684 |
-
else:
|
685 |
-
source_image = "Image not found"
|
686 |
-
source_image_url = ""
|
687 |
-
|
688 |
-
word_break = "word-break: break-all;"
|
689 |
-
return f"""
|
690 |
-
<tr>
|
691 |
-
<td>input image</td>
|
692 |
-
<td>{source_image}</td>
|
693 |
-
<td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td>
|
694 |
-
<td style="{word_break}";>{source_image_url}</td></tr>"""
|
695 |
-
|
696 |
-
def create_ordinary_user_table(self):
|
697 |
-
rows = []
|
698 |
-
rows.append(self.format_image_ordinary_user_row())
|
699 |
-
rows.append(self.format_text_ordinary_user_row())
|
700 |
-
table = "\n".join(rows)
|
701 |
-
|
702 |
-
return f"""
|
703 |
-
<h5>Comparison between input news and source news:</h5>
|
704 |
-
<table border="1" style="width:100%; text-align:left;">
|
705 |
-
<col style="width: 340px;">
|
706 |
-
<col style="width: 30px;">
|
707 |
-
<col style="width: 75px;">
|
708 |
-
<thead>
|
709 |
-
<tr>
|
710 |
-
<th>Input news</th>
|
711 |
-
<th>Forensic</th>
|
712 |
-
<th>Originality</th>
|
713 |
-
</tr>
|
714 |
-
</thead>
|
715 |
-
<tbody>
|
716 |
-
{table}
|
717 |
-
</tbody>
|
718 |
-
</table>
|
719 |
-
|
720 |
-
<style>
|
721 |
-
"""
|
722 |
-
|
723 |
-
def format_text_ordinary_user_row(self):
|
724 |
-
input_sentences = ""
|
725 |
-
source_text_urls = ""
|
726 |
-
urls = []
|
727 |
-
for _, row in self.aligned_sentences_df.iterrows():
|
728 |
-
if row["input"] is None:
|
729 |
-
continue
|
730 |
-
input_sentences += row["input"] + "<br><br>"
|
731 |
-
url = row["url"]
|
732 |
-
if url not in urls:
|
733 |
-
urls.append(url)
|
734 |
-
source_text_urls += f"""<a href="{url}">{url}</a><br>"""
|
735 |
-
|
736 |
-
word_break = "word-break: break-all;"
|
737 |
-
return f"""
|
738 |
-
<tr>
|
739 |
-
<td>{input_sentences}</td>
|
740 |
-
<td>{self.text_prediction_label[0]}<br>
|
741 |
-
({self.text_prediction_score[0] * 100:.2f}%)</td>
|
742 |
-
<td style="{word_break}";>{source_text_urls}</td>
|
743 |
-
</tr>
|
744 |
-
"""
|
745 |
-
|
746 |
-
def format_image_ordinary_user_row(self):
|
747 |
-
|
748 |
-
if (
|
749 |
-
self.image_referent_url is not None
|
750 |
-
or self.image_referent_url != ""
|
751 |
-
):
|
752 |
-
source_image_url = f"""<a href="{self.image_referent_url}">{self.image_referent_url}</a>""" # noqa: E501
|
753 |
-
else:
|
754 |
-
source_image_url = ""
|
755 |
-
|
756 |
-
word_break = "word-break: break-all;"
|
757 |
-
return f"""<tr><td>input image</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td style="{word_break}";>{source_image_url}</td></tr>""" # noqa: E501
|
758 |
-
|
759 |
-
def create_governor_table(self):
|
760 |
-
rows = []
|
761 |
-
rows.append(self.format_image_governor_row())
|
762 |
-
|
763 |
-
for _, row in self.aligned_sentences_df.iterrows():
|
764 |
-
if row["input"] is None:
|
765 |
-
continue
|
766 |
-
|
767 |
-
if row["source"] is None:
|
768 |
-
equal_idx_1 = equal_idx_2 = []
|
769 |
-
else:
|
770 |
-
# Get index of equal phrases in input and source sentences
|
771 |
-
equal_idx_1, equal_idx_2 = extract_equal_text(
|
772 |
-
row["input"],
|
773 |
-
row["source"],
|
774 |
-
)
|
775 |
-
|
776 |
-
self.governor_table.append(
|
777 |
-
[
|
778 |
-
row,
|
779 |
-
equal_idx_1,
|
780 |
-
equal_idx_2,
|
781 |
-
row["entities"],
|
782 |
-
],
|
783 |
-
)
|
784 |
-
|
785 |
-
formatted_row = self.format_text_governor_row()
|
786 |
-
rows.append(formatted_row)
|
787 |
-
|
788 |
-
table = "\n".join(rows)
|
789 |
-
return f"""
|
790 |
-
<h5>Comparison between input news and source news:</h5>
|
791 |
-
<table border="1" style="width:100%; text-align:left;">
|
792 |
-
<col style="width: 170px;">
|
793 |
-
<col style="width: 170px;">
|
794 |
-
<col style="width: 30px;">
|
795 |
-
<col style="width: 75px;">
|
796 |
-
<thead>
|
797 |
-
<tr>
|
798 |
-
<th>Input news</th>
|
799 |
-
<th>Source (URL in Originality)</th>
|
800 |
-
<th>Forensic</th>
|
801 |
-
<th>Originality</th>
|
802 |
-
</tr>
|
803 |
-
</thead>
|
804 |
-
<tbody>
|
805 |
-
{table}
|
806 |
-
</tbody>
|
807 |
-
</table>
|
808 |
-
|
809 |
-
<style>
|
810 |
-
"""
|
811 |
-
|
812 |
-
def format_text_governor_row(self):
|
813 |
-
input_sentences = ""
|
814 |
-
source_sentences = ""
|
815 |
-
source_text_urls = ""
|
816 |
-
urls = []
|
817 |
-
sentence_count = 0
|
818 |
-
entity_count = [0, 0] # to get index of [-2]
|
819 |
-
for row in self.governor_table:
|
820 |
-
if row[0]["input"] is None:
|
821 |
-
continue
|
822 |
-
|
823 |
-
if row[0]["source"] is not None: # source is not empty
|
824 |
-
# highlight entities
|
825 |
-
input_sentence, highlight_idx_input = apply_highlight(
|
826 |
-
row[0]["input"],
|
827 |
-
row[3], # entities_with_colors
|
828 |
-
"input", # key
|
829 |
-
entity_count[
|
830 |
-
-2
|
831 |
-
], # since the last one is for current counting
|
832 |
-
)
|
833 |
-
source_sentence, highlight_idx_source = apply_highlight(
|
834 |
-
row[0]["source"],
|
835 |
-
row[3], # entities_with_colors
|
836 |
-
"source", # key
|
837 |
-
entity_count[
|
838 |
-
-2
|
839 |
-
], # since the last one is for current counting
|
840 |
-
)
|
841 |
-
|
842 |
-
# Color overlapping words
|
843 |
-
input_sentence = color_text(
|
844 |
-
input_sentence,
|
845 |
-
row[1],
|
846 |
-
highlight_idx_input,
|
847 |
-
) # text, index of highlight words
|
848 |
-
source_sentence = color_text(
|
849 |
-
source_sentence,
|
850 |
-
row[2],
|
851 |
-
highlight_idx_source,
|
852 |
-
) # text, index of highlight words
|
853 |
-
|
854 |
-
input_sentence = input_sentence.replace(
|
855 |
-
"span_style",
|
856 |
-
"span style",
|
857 |
-
).replace("1px_4px", "1px 4px")
|
858 |
-
source_sentence = source_sentence.replace(
|
859 |
-
"span_style",
|
860 |
-
"span style",
|
861 |
-
).replace("1px_4px", "1px 4px")
|
862 |
-
|
863 |
-
else:
|
864 |
-
if row[0]["source"] is None:
|
865 |
-
source_sentence = ""
|
866 |
-
else:
|
867 |
-
source_sentence = row[0]["source"]
|
868 |
-
input_sentence = row[0]["input"]
|
869 |
-
|
870 |
-
# convert score to HUMAN-based score:
|
871 |
-
input_sentences += input_sentence + "<br><br>"
|
872 |
-
source_sentences += source_sentence + "<br><br>"
|
873 |
-
|
874 |
-
url = row[0]["url"]
|
875 |
-
if url not in urls:
|
876 |
-
urls.append(url)
|
877 |
-
source_text_urls += f"""<a href="{url}">{url}</a><br><br>"""
|
878 |
-
sentence_count += 1
|
879 |
-
if row[3] is not None:
|
880 |
-
entity_count.append(len(row[3]))
|
881 |
-
|
882 |
-
entity_count_text = format_entity_count(sum(entity_count))
|
883 |
-
word_break = "word-break: break-all;"
|
884 |
-
return f"""
|
885 |
-
<tr>
|
886 |
-
<td>{input_sentences}</td>
|
887 |
-
<td>{source_sentences}</td>
|
888 |
-
<td>{self.text_prediction_label[0]}<br>
|
889 |
-
({self.text_prediction_score[0] * 100:.2f}%)<br><br>
|
890 |
-
{entity_count_text}</td>
|
891 |
-
<td style="{word_break}";>{source_text_urls}</td>
|
892 |
-
</tr>
|
893 |
-
"""
|
894 |
-
|
895 |
-
def format_image_governor_row(self):
|
896 |
-
if (
|
897 |
-
self.image_referent_url is not None
|
898 |
-
or self.image_referent_url != ""
|
899 |
-
):
|
900 |
-
source_image = f"""<img src="{self.image_referent_url}" width="100" height="150">""" # noqa: E501
|
901 |
-
source_image_url = f"""<a href="{self.image_referent_url}">{self.image_referent_url}</a>""" # noqa: E501
|
902 |
-
else:
|
903 |
-
source_image = "Image not found"
|
904 |
-
source_image_url = ""
|
905 |
-
|
906 |
-
word_break = "word-break: break-all;"
|
907 |
-
return f"""<tr><td>input image</td><td>{source_image}</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td style="{word_break}";>{source_image_url}</td></tr>""" # noqa: E501
|
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from src.application.config import (
|
9 |
+
MIN_RATIO_PARAPHRASE_NUM,
|
10 |
+
PARAPHRASE_THRESHOLD,
|
11 |
+
PARAPHRASE_THRESHOLD_MACHINE,
|
12 |
+
)
|
13 |
+
from src.application.formatting_fact_checker import create_fact_checker_table
|
14 |
+
from src.application.formatting_governor import create_governor_table
|
15 |
+
from src.application.formatting_ordinary_user import create_ordinary_user_table
|
16 |
+
from src.application.image.image import ImageDetector
|
17 |
from src.application.image.image_detection import (
|
18 |
detect_image_by_ai_model,
|
19 |
detect_image_by_reverse_search,
|
20 |
detect_image_from_news_image,
|
21 |
)
|
22 |
+
from src.application.text.entity import highlight_entities
|
|
|
|
|
|
|
23 |
from src.application.text.helper import (
|
|
|
24 |
postprocess_label,
|
25 |
split_into_paragraphs,
|
26 |
)
|
|
|
29 |
predict_generation_model,
|
30 |
)
|
31 |
from src.application.text.search_detection import find_sentence_source
|
32 |
+
from src.application.text.text import TextDetector
|
33 |
|
34 |
|
35 |
class NewsVerification:
|
|
|
42 |
self.news_content: str = ""
|
43 |
self.news_image: str = ""
|
44 |
|
45 |
+
self.text = TextDetector()
|
46 |
+
self.image = ImageDetector()
|
|
|
|
|
|
|
|
|
47 |
|
48 |
self.news_prediction_label: str = ""
|
49 |
self.news_prediction_score: float = -1
|
|
|
63 |
# "entities",
|
64 |
],
|
65 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def load_news(self, news_title: str, news_content: str, news_image: str):
|
68 |
"""
|
|
|
105 |
) # Handle mixed data types and NaNs
|
106 |
|
107 |
# Group sentences by URL and concatenate 'input' and 'source' text.
|
108 |
+
self.text.grouped_url_df = (
|
109 |
self.aligned_sentences_df.groupby("url")
|
110 |
.agg(
|
111 |
{
|
|
|
117 |
) # Reset index to make 'url' a regular column
|
118 |
|
119 |
# Add new columns for label and score
|
120 |
+
self.text.grouped_url_df["label"] = None
|
121 |
+
self.text.grouped_url_df["score"] = None
|
122 |
|
123 |
print(f"aligned_sentences_df:\n {self.aligned_sentences_df}")
|
124 |
|
|
|
126 |
"""
|
127 |
Determines the text origin for each URL group.
|
128 |
"""
|
129 |
+
for index, row in self.text.grouped_url_df.iterrows():
|
130 |
# Verify text origin using URL-based verification.
|
131 |
label, score = self.verify_text(row["url"])
|
132 |
|
|
|
138 |
# Detect text origin using an AI model.
|
139 |
label, score = detect_text_by_ai_model(text)
|
140 |
|
141 |
+
self.text.grouped_url_df.at[index, "label"] = label
|
142 |
+
self.text.grouped_url_df.at[index, "score"] = score
|
143 |
|
144 |
def determine_text_origin(self):
|
145 |
"""
|
|
|
160 |
self.determine_text_origin_by_url()
|
161 |
|
162 |
# Determine the overall label and score for the entire input text.
|
163 |
+
if not self.text.grouped_url_df.empty:
|
164 |
# Check for 'gpt-4o' labels in the grouped URLs.
|
165 |
+
machine_label = self.text.grouped_url_df[
|
166 |
+
self.text.grouped_url_df["label"].str.contains(
|
167 |
"gpt-4o",
|
168 |
case=False,
|
169 |
na=False,
|
|
|
177 |
|
178 |
# labels = " and ".join(machine_label["label"].tolist())
|
179 |
# label = remove_duplicate_words(label)
|
180 |
+
self.text.prediction_label[0] = label
|
181 |
+
self.text.prediction_score[0] = machine_label["score"].mean()
|
182 |
else:
|
183 |
# If no 'gpt-4o' labels, assign for 'HUMAN' labels.
|
184 |
machine_label = self.aligned_sentences_df[
|
185 |
self.aligned_sentences_df["label"] == "HUMAN"
|
186 |
]
|
187 |
+
self.text.prediction_label[0] = "HUMAN"
|
188 |
+
self.text.prediction_score[0] = machine_label["score"].mean()
|
189 |
else:
|
190 |
# If no found URLs, use AI detection on the entire input text.
|
191 |
print("No source found in the input text")
|
|
|
193 |
|
194 |
# Detect text origin using an AI model.
|
195 |
label, score = detect_text_by_ai_model(text)
|
196 |
+
self.text.prediction_label[0] = label
|
197 |
+
self.text.prediction_score[0] = score
|
198 |
|
199 |
def find_text_source(self):
|
200 |
"""
|
201 |
Determines the origin of the given text based on paraphrasing
|
202 |
detection and human authorship analysis.
|
203 |
|
204 |
+
1. Splits the input news text into sentences,
|
205 |
2. Searches for sources for each sentence
|
206 |
3. Updates the aligned_sentences_df with the found sources.
|
207 |
"""
|
208 |
print("CHECK TEXT:")
|
209 |
print("\tFrom search engine:")
|
210 |
+
|
211 |
input_paragraphs = split_into_paragraphs(self.news_text)
|
212 |
+
|
213 |
+
# Initialize an empty DataFrame if it doesn't exist,
|
214 |
+
# otherwise extend it.
|
215 |
+
if (
|
216 |
+
not hasattr(self, "aligned_sentences_df")
|
217 |
+
or self.aligned_sentences_df is None
|
218 |
+
):
|
219 |
+
self.aligned_sentences_df = pd.DataFrame(
|
220 |
+
columns=[
|
221 |
+
"input",
|
222 |
+
"source",
|
223 |
+
"label",
|
224 |
+
"similarity",
|
225 |
+
"paraphrase",
|
226 |
+
"url",
|
227 |
+
"entities",
|
228 |
+
],
|
229 |
+
)
|
230 |
|
231 |
# Setup DataFrame for input_sentences
|
232 |
for _ in range(len(input_paragraphs)):
|
|
|
265 |
index,
|
266 |
self.aligned_sentences_df,
|
267 |
)
|
268 |
+
|
269 |
# Initialize found_img_url if it does not exist.
|
270 |
+
if not hasattr(self, "found_img_url"):
|
271 |
self.found_img_url = []
|
272 |
self.found_img_url.extend(img_urls)
|
273 |
|
274 |
def verify_text(self, url):
|
275 |
"""
|
276 |
+
Verifies the text origin based on similarity scores and labels
|
277 |
associated with a given URL.
|
278 |
|
279 |
+
1. Filters sentences by URL and similarity score,
|
280 |
+
2. Determines if the text is likely generated by a machine or a human.
|
281 |
3. Calculates an average similarity score.
|
282 |
|
283 |
Args:
|
|
|
285 |
|
286 |
Returns:
|
287 |
tuple: A
|
288 |
+
- Label ("MACHINE", "HUMAN", or "UNKNOWN")
|
289 |
- Score
|
290 |
"""
|
291 |
label = "UNKNOWN"
|
292 |
score = 0
|
293 |
+
|
294 |
# calculate the average similarity when the similary score
|
295 |
# in each row of sentences_df is higher than 0.8
|
296 |
+
|
297 |
# Filter sentences by URL.
|
298 |
filtered_by_url = self.aligned_sentences_df[
|
299 |
self.aligned_sentences_df["url"] == url
|
300 |
]
|
301 |
+
|
302 |
# Filter sentences by similarity score (> PARAPHRASE_THRESHOLD).
|
303 |
filtered_by_similarity = filtered_by_url[
|
304 |
filtered_by_url["similarity"] > PARAPHRASE_THRESHOLD
|
305 |
]
|
306 |
+
|
307 |
# Check if a ratio of remaining filtering-sentences is more than 50%.
|
308 |
+
if (
|
309 |
+
len(filtered_by_similarity) / len(self.aligned_sentences_df)
|
310 |
+
> MIN_RATIO_PARAPHRASE_NUM
|
311 |
+
):
|
312 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
313 |
contains_machine = (
|
314 |
filtered_by_similarity["label"]
|
|
|
319 |
)
|
320 |
.any()
|
321 |
)
|
322 |
+
|
323 |
# TODO: integrate with determine_text_origin
|
324 |
if contains_machine:
|
325 |
# If "MACHINE" label is present, set label and calculate score.
|
|
|
334 |
label = f"Partially generated by {generated_model}"
|
335 |
score = machine_rows["similarity"].mean()
|
336 |
else:
|
337 |
+
# If no "MACHINE" label,
|
338 |
+
# assign "HUMAN" label and calculate score.
|
339 |
label = "HUMAN"
|
340 |
human_rows = filtered_by_similarity[
|
341 |
filtered_by_similarity["label"].str.contains(
|
|
|
350 |
|
351 |
def determine_image_origin(self):
|
352 |
"""
|
353 |
+
Determines the origin of the news image using 3 detection methods.
|
354 |
|
355 |
1. Matching against previously found image URLs.
|
356 |
2. Reverse image search.
|
357 |
3. AI-based image detection.
|
358 |
|
359 |
+
If none of these methods succeed, the image origin is "UNKNOWN".
|
360 |
"""
|
361 |
print("CHECK IMAGE:")
|
362 |
+
|
363 |
# Handle the case where no image is provided.
|
364 |
if self.news_image is None:
|
365 |
+
self.image.prediction_label = "UNKNOWN"
|
366 |
+
self.image.prediction_score = 0.0
|
367 |
+
self.image.referent_url = None
|
368 |
return
|
369 |
|
370 |
# Attempt to match the image against previously found image URLs.
|
|
|
375 |
)
|
376 |
if matched_url is not None:
|
377 |
print(f"matched image: {matched_url}\nsimilarity: {similarity}\n")
|
378 |
+
self.image.prediction_label = "HUMAN"
|
379 |
+
self.image.prediction_score = similarity
|
380 |
+
self.image.referent_url = matched_url
|
381 |
return
|
382 |
|
383 |
# Attempt to find the image origin using reverse image search.
|
|
|
387 |
)
|
388 |
if matched_url is not None:
|
389 |
print(f"matched image: {matched_url}\tScore: {similarity}%\n")
|
390 |
+
self.image.prediction_label = "HUMAN"
|
391 |
+
self.image.prediction_score = similarity
|
392 |
+
self.image.referent_url = matched_url
|
393 |
return
|
394 |
|
395 |
# Attempt to detect the image origin using an AI model.
|
|
|
397 |
detected_label, score = detect_image_by_ai_model(self.news_image)
|
398 |
if detected_label:
|
399 |
print(f"detected_label: {detected_label} ({score})")
|
400 |
+
self.image.prediction_label = detected_label
|
401 |
+
self.image.prediction_score = score
|
402 |
+
self.image.referent_url = None
|
403 |
return
|
404 |
|
405 |
# If all detection methods fail, mark the image origin as "UNKNOWN".
|
406 |
+
self.image.prediction_label = "UNKNOWN"
|
407 |
+
self.image.prediction_score = 50
|
408 |
+
self.image.referent_url = None
|
409 |
|
410 |
def determine_origin(self):
|
411 |
"""
|
|
|
415 |
self.determine_text_origin()
|
416 |
if self.news_image != "":
|
417 |
self.determine_image_origin()
|
418 |
+
|
419 |
# Handle entity recognition and processing.
|
420 |
self.handle_entities()
|
421 |
|
422 |
def generate_report(self) -> tuple[str, str, str]:
|
423 |
"""
|
424 |
+
Generates reports tailored for different user roles
|
425 |
(ordinary users, fact checkers, governors).
|
426 |
|
427 |
Returns:
|
|
|
430 |
- fact_checker_table: Report for fact checkers.
|
431 |
- governor_table: Report for governors.
|
432 |
"""
|
433 |
+
ordinary_user_table = create_ordinary_user_table(
|
434 |
+
self.aligned_sentences_df,
|
435 |
+
self.text,
|
436 |
+
self.image,
|
437 |
+
)
|
438 |
+
fact_checker_table = create_fact_checker_table(
|
439 |
+
self.aligned_sentences_df,
|
440 |
+
self.text,
|
441 |
+
self.image,
|
442 |
+
)
|
443 |
+
governor_table = create_governor_table(
|
444 |
+
self.aligned_sentences_df,
|
445 |
+
self.text,
|
446 |
+
self.image,
|
447 |
+
)
|
448 |
|
449 |
return ordinary_user_table, fact_checker_table, governor_table
|
450 |
|
|
|
452 |
"""
|
453 |
Highlights and assigns entities with colors to aligned sentences
|
454 |
based on grouped URLs.
|
455 |
+
|
456 |
For each grouped URL:
|
457 |
1. Highlights entities in the input and source text
|
458 |
+
2. Then assigns these highlighted entities to the corresponding
|
459 |
sentences in the aligned sentences DataFrame.
|
460 |
"""
|
461 |
+
|
462 |
entities_with_colors = []
|
463 |
+
for index, row in self.text.grouped_url_df.iterrows():
|
464 |
# Get entity-words (in pair) with colors
|
465 |
entities_with_colors = highlight_entities(
|
466 |
row["input"],
|
467 |
row["source"],
|
468 |
)
|
469 |
|
470 |
+
# Assign the highlighted entities to the corresponding sentences
|
471 |
# in aligned_sentences_df.
|
472 |
for index, sentence in self.aligned_sentences_df.iterrows():
|
473 |
if sentence["url"] == row["url"]:
|
|
|
484 |
set: A set containing the unique URLs referenced in the text.
|
485 |
"""
|
486 |
return set(self.text_referent_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/application/content_generation.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
|
3 |
import openai
|
4 |
import pandas as pd
|
@@ -100,7 +101,7 @@ def extract_title_content(fake_news: str) -> tuple[str, str]:
|
|
100 |
def generate_fake_image(
|
101 |
title: str,
|
102 |
model: str = GPT_IMAGE_MODEL,
|
103 |
-
) -> str
|
104 |
"""
|
105 |
Generates a fake image URL using Azure OpenAI's image generation API.
|
106 |
|
|
|
1 |
import json
|
2 |
+
from typing import Optional
|
3 |
|
4 |
import openai
|
5 |
import pandas as pd
|
|
|
101 |
def generate_fake_image(
|
102 |
title: str,
|
103 |
model: str = GPT_IMAGE_MODEL,
|
104 |
+
) -> Optional[str]:
|
105 |
"""
|
106 |
Generates a fake image URL using Azure OpenAI's image generation API.
|
107 |
|
src/application/formatting.py
CHANGED
@@ -1,18 +1,26 @@
|
|
1 |
-
from src.application.text.helper import
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
-
def color_text(
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
Colors specific words in a text based on provided indices.
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
the specified ranges with a
|
11 |
|
12 |
Args:
|
13 |
text (str): The input text.
|
14 |
-
colored_idx (list): A list of dictionaries,
|
15 |
-
|
|
|
16 |
highlighted_idx (list): A list of indices to exclude from coloring.
|
17 |
|
18 |
Returns:
|
@@ -23,7 +31,7 @@ def color_text(text: str, colored_idx: list[dict], highlighted_idx: list[int]) -
|
|
23 |
|
24 |
# Extract start and end indices from colored_idx.
|
25 |
starts, ends = extract_starts_ends(colored_idx)
|
26 |
-
|
27 |
# Filter the start and end indices to exclude highlighted_idx.
|
28 |
starts, ends = filter_indices(starts, ends, highlighted_idx)
|
29 |
|
@@ -64,4 +72,4 @@ def format_entity_count(entity_count: int) -> str:
|
|
64 |
entity_count_text = "with 1 altered entity"
|
65 |
else:
|
66 |
entity_count_text = "with altered entities"
|
67 |
-
return entity_count_text
|
|
|
1 |
+
from src.application.text.helper import (
|
2 |
+
extract_starts_ends,
|
3 |
+
filter_indices,
|
4 |
+
)
|
5 |
|
6 |
|
7 |
+
def color_text(
|
8 |
+
text: str,
|
9 |
+
colored_idx: list[dict],
|
10 |
+
highlighted_idx: list[int],
|
11 |
+
) -> str:
|
12 |
"""
|
13 |
Colors specific words in a text based on provided indices.
|
14 |
|
15 |
+
1. splits the text into words
|
16 |
+
2. filters the indices
|
17 |
+
3. wraps the words within the specified ranges with a coloring tag
|
18 |
|
19 |
Args:
|
20 |
text (str): The input text.
|
21 |
+
colored_idx (list): A list of dictionaries,
|
22 |
+
where each dictionary contains
|
23 |
+
'start' and 'end' keys representing indices of words to color.
|
24 |
highlighted_idx (list): A list of indices to exclude from coloring.
|
25 |
|
26 |
Returns:
|
|
|
31 |
|
32 |
# Extract start and end indices from colored_idx.
|
33 |
starts, ends = extract_starts_ends(colored_idx)
|
34 |
+
|
35 |
# Filter the start and end indices to exclude highlighted_idx.
|
36 |
starts, ends = filter_indices(starts, ends, highlighted_idx)
|
37 |
|
|
|
72 |
entity_count_text = "with 1 altered entity"
|
73 |
else:
|
74 |
entity_count_text = "with altered entities"
|
75 |
+
return entity_count_text
|
src/application/formatting_fact_checker.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import DataFrame
|
2 |
+
|
3 |
+
from src.application.config import WORD_BREAK
|
4 |
+
from src.application.formatting import (
|
5 |
+
color_text,
|
6 |
+
format_entity_count,
|
7 |
+
)
|
8 |
+
from src.application.image.image import ImageDetector
|
9 |
+
from src.application.text.entity import apply_highlight
|
10 |
+
from src.application.text.helper import extract_equal_text
|
11 |
+
from src.application.text.text import TextDetector
|
12 |
+
|
13 |
+
|
14 |
+
def create_fact_checker_table(
|
15 |
+
aligned_sentences_df: DataFrame,
|
16 |
+
text: TextDetector,
|
17 |
+
image: ImageDetector,
|
18 |
+
):
|
19 |
+
rows = []
|
20 |
+
rows.append(format_image_fact_checker_row(image))
|
21 |
+
|
22 |
+
for _, row in aligned_sentences_df.iterrows():
|
23 |
+
if row["input"] is None:
|
24 |
+
continue
|
25 |
+
|
26 |
+
if row["source"] is None:
|
27 |
+
equal_idx_1 = equal_idx_2 = []
|
28 |
+
|
29 |
+
else: # Get index of equal phrases in input and source sentences
|
30 |
+
equal_idx_1, equal_idx_2 = extract_equal_text(
|
31 |
+
row["input"],
|
32 |
+
row["source"],
|
33 |
+
)
|
34 |
+
|
35 |
+
text.fact_checker_table.append(
|
36 |
+
[
|
37 |
+
row, # aligned_sentences_df
|
38 |
+
equal_idx_1, # index of equal text in input
|
39 |
+
equal_idx_2, # index of equal text in source
|
40 |
+
row["entities"],
|
41 |
+
row["url"],
|
42 |
+
],
|
43 |
+
)
|
44 |
+
|
45 |
+
previous_url = None
|
46 |
+
span_row = 1
|
47 |
+
for index, row in enumerate(text.fact_checker_table):
|
48 |
+
current_url = row[4]
|
49 |
+
last_url_row = False
|
50 |
+
|
51 |
+
# First row or URL change
|
52 |
+
if index == 0 or current_url != previous_url:
|
53 |
+
first_url_row = True
|
54 |
+
previous_url = current_url
|
55 |
+
# Increase counter "span_row" when the next url is the same
|
56 |
+
while (
|
57 |
+
index + span_row < len(text.fact_checker_table)
|
58 |
+
and text.fact_checker_table[index + span_row][4] == current_url
|
59 |
+
):
|
60 |
+
span_row += 1
|
61 |
+
|
62 |
+
else:
|
63 |
+
first_url_row = False
|
64 |
+
span_row -= 1
|
65 |
+
|
66 |
+
if span_row == 1:
|
67 |
+
last_url_row = True
|
68 |
+
|
69 |
+
formatted_row = format_text_fact_checker_row(
|
70 |
+
text,
|
71 |
+
row,
|
72 |
+
first_url_row,
|
73 |
+
last_url_row,
|
74 |
+
span_row,
|
75 |
+
)
|
76 |
+
rows.append(formatted_row)
|
77 |
+
|
78 |
+
table = "\n".join(rows)
|
79 |
+
return f"""
|
80 |
+
<h5>Comparison between input news and source news:</h5>
|
81 |
+
<table border="1" style="width:100%; text-align:left;">
|
82 |
+
<col style="width: 170px;">
|
83 |
+
<col style="width: 170px;">
|
84 |
+
<col style="width: 30px;">
|
85 |
+
<col style="width: 75px;">
|
86 |
+
<thead>
|
87 |
+
<tr>
|
88 |
+
<th>Input news</th>
|
89 |
+
<th>Source (URL in Originality)</th>
|
90 |
+
<th>Forensic</th>
|
91 |
+
<th>Originality</th>
|
92 |
+
</tr>
|
93 |
+
</thead>
|
94 |
+
<tbody>
|
95 |
+
{table}
|
96 |
+
</tbody>
|
97 |
+
</table>
|
98 |
+
<style>
|
99 |
+
"""
|
100 |
+
|
101 |
+
|
102 |
+
def format_text_fact_checker_row(
|
103 |
+
text: TextDetector,
|
104 |
+
row: list,
|
105 |
+
first_url_row: bool=True,
|
106 |
+
last_url_row: bool=True,
|
107 |
+
span_row: int=1,
|
108 |
+
):
|
109 |
+
entity_count = 0
|
110 |
+
print(f"row: {row}")
|
111 |
+
if row[0]["input"] is None:
|
112 |
+
return ""
|
113 |
+
if row[0]["source"] is not None: # source is not empty
|
114 |
+
if row[3] is not None:
|
115 |
+
# highlight entities
|
116 |
+
input_sentence, highlight_idx_input = apply_highlight(
|
117 |
+
row[0]["input"],
|
118 |
+
row[3],
|
119 |
+
"input",
|
120 |
+
)
|
121 |
+
source_sentence, highlight_idx_source = apply_highlight(
|
122 |
+
row[0]["source"],
|
123 |
+
row[3],
|
124 |
+
"source",
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
input_sentence = row[0]["input"]
|
128 |
+
source_sentence = row[0]["source"]
|
129 |
+
highlight_idx_input = []
|
130 |
+
highlight_idx_source = []
|
131 |
+
|
132 |
+
if row[3] is not None:
|
133 |
+
entity_count = len(row[3])
|
134 |
+
|
135 |
+
# Color overlapping words
|
136 |
+
input_sentence = color_text(
|
137 |
+
input_sentence,
|
138 |
+
row[1],
|
139 |
+
highlight_idx_input,
|
140 |
+
) # text, index of highlight words
|
141 |
+
source_sentence = color_text(
|
142 |
+
source_sentence,
|
143 |
+
row[2],
|
144 |
+
highlight_idx_source,
|
145 |
+
) # text, index of highlight words
|
146 |
+
|
147 |
+
# Replace _ to get correct formatting
|
148 |
+
# Original one having _ for correct word counting
|
149 |
+
input_sentence = input_sentence.replace(
|
150 |
+
"span_style",
|
151 |
+
"span style",
|
152 |
+
).replace("1px_4px", "1px 4px")
|
153 |
+
source_sentence = source_sentence.replace(
|
154 |
+
"span_style",
|
155 |
+
"span style",
|
156 |
+
).replace("1px_4px", "1px 4px")
|
157 |
+
else:
|
158 |
+
input_sentence = row[0]["input"]
|
159 |
+
source_sentence = row[0]["source"]
|
160 |
+
|
161 |
+
url = row[0]["url"]
|
162 |
+
|
163 |
+
# Displayed label and score by url
|
164 |
+
filterby_url = text.grouped_url_df[text.grouped_url_df["url"] == url]
|
165 |
+
if len(filterby_url) > 0:
|
166 |
+
label = filterby_url["label"].values[0]
|
167 |
+
score = filterby_url["score"].values[0]
|
168 |
+
else:
|
169 |
+
label = text.prediction_label[0]
|
170 |
+
score = text.prediction_score[0]
|
171 |
+
|
172 |
+
# Format displayed url
|
173 |
+
source_text_url = f"""<a href="{url}">{url}</a>"""
|
174 |
+
|
175 |
+
# Format displayed entity count
|
176 |
+
entity_count_text = format_entity_count(entity_count)
|
177 |
+
|
178 |
+
border_top = "border-top: 1px solid transparent;"
|
179 |
+
border_bottom = "border-bottom: 1px solid transparent;"
|
180 |
+
if first_url_row is True:
|
181 |
+
# First & Last the group: no transparent
|
182 |
+
if last_url_row is True:
|
183 |
+
return f"""
|
184 |
+
<tr>
|
185 |
+
<td>{input_sentence}</td>
|
186 |
+
<td>{source_sentence}</td>
|
187 |
+
<td rowspan="{span_row}">{label}<br>
|
188 |
+
({score * 100:.2f}%)<br><br>
|
189 |
+
{entity_count_text}</td>
|
190 |
+
<td rowspan="{span_row}"; style="{WORD_BREAK}";>{source_text_url}</td>
|
191 |
+
</tr>
|
192 |
+
"""
|
193 |
+
# First row of the group: transparent bottom border
|
194 |
+
return f"""
|
195 |
+
<tr>
|
196 |
+
<td style="{border_bottom}";>{input_sentence}</td>
|
197 |
+
<td style="{border_bottom}";>{source_sentence}</td>
|
198 |
+
<td rowspan="{span_row}">{label}<br>
|
199 |
+
({score * 100:.2f}%)<br><br>
|
200 |
+
{entity_count_text}</td>
|
201 |
+
<td rowspan="{span_row}"; style="{WORD_BREAK}";>{source_text_url}</td>
|
202 |
+
</tr>
|
203 |
+
"""
|
204 |
+
else:
|
205 |
+
if last_url_row is True:
|
206 |
+
# NOT First row, Last row: transparent top border
|
207 |
+
return f"""
|
208 |
+
<tr>
|
209 |
+
<td style="{border_top}";>{input_sentence}</td>
|
210 |
+
<td style="{border_top}";>{source_sentence}</td>
|
211 |
+
</tr>
|
212 |
+
"""
|
213 |
+
else:
|
214 |
+
# NOT First & NOT Last row: transparent top & bottom borders
|
215 |
+
return f"""
|
216 |
+
<tr>
|
217 |
+
<td style="{border_top} {border_bottom}";>{input_sentence}</td>
|
218 |
+
<td style="{border_top} {border_bottom}";>{source_sentence}</td>
|
219 |
+
</tr>
|
220 |
+
"""
|
221 |
+
|
222 |
+
|
223 |
+
def format_image_fact_checker_row(image):
|
224 |
+
if image.referent_url is not None or image.referent_url != "":
|
225 |
+
source_image = f"""<img src="{image.referent_url}" width="100" height="150">""" # noqa: E501
|
226 |
+
source_image_url = f"""<a href="{image.referent_url}">{image.referent_url}</a>""" # noqa: E501
|
227 |
+
else:
|
228 |
+
source_image = "Image not found"
|
229 |
+
source_image_url = ""
|
230 |
+
|
231 |
+
return f"""
|
232 |
+
<tr>
|
233 |
+
<td>input image</td>
|
234 |
+
<td>{source_image}</td>
|
235 |
+
<td>{image.prediction_label}<br>({image.prediction_score:.2f}%)</td>
|
236 |
+
<td style="{WORD_BREAK}";>{source_image_url}</td>
|
237 |
+
</tr>
|
238 |
+
"""
|
src/application/formatting_governor.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import DataFrame
|
2 |
+
|
3 |
+
from src.application.config import WORD_BREAK
|
4 |
+
from src.application.formatting import (
|
5 |
+
color_text,
|
6 |
+
format_entity_count,
|
7 |
+
)
|
8 |
+
from src.application.image.image import ImageDetector
|
9 |
+
from src.application.text.entity import apply_highlight
|
10 |
+
from src.application.text.helper import extract_equal_text
|
11 |
+
from src.application.text.text import TextDetector
|
12 |
+
|
13 |
+
|
14 |
+
def create_governor_table(
|
15 |
+
aligned_sentences_df: DataFrame,
|
16 |
+
text: TextDetector,
|
17 |
+
image: ImageDetector,
|
18 |
+
):
|
19 |
+
rows = []
|
20 |
+
rows.append(format_image_governor_row(image))
|
21 |
+
|
22 |
+
for _, row in aligned_sentences_df.iterrows():
|
23 |
+
if row["input"] is None:
|
24 |
+
continue
|
25 |
+
|
26 |
+
if row["source"] is None:
|
27 |
+
equal_idx_1 = equal_idx_2 = []
|
28 |
+
else:
|
29 |
+
# Get index of equal phrases in input and source sentences
|
30 |
+
equal_idx_1, equal_idx_2 = extract_equal_text(
|
31 |
+
row["input"],
|
32 |
+
row["source"],
|
33 |
+
)
|
34 |
+
|
35 |
+
text.governor_table.append(
|
36 |
+
[
|
37 |
+
row,
|
38 |
+
equal_idx_1,
|
39 |
+
equal_idx_2,
|
40 |
+
row["entities"],
|
41 |
+
],
|
42 |
+
)
|
43 |
+
|
44 |
+
formatted_row = format_text_governor_row(text)
|
45 |
+
rows.append(formatted_row)
|
46 |
+
|
47 |
+
table = "\n".join(rows)
|
48 |
+
return f"""
|
49 |
+
<h5>Comparison between input news and source news:</h5>
|
50 |
+
<table border="1" style="width:100%; text-align:left;">
|
51 |
+
<col style="width: 170px;">
|
52 |
+
<col style="width: 170px;">
|
53 |
+
<col style="width: 30px;">
|
54 |
+
<col style="width: 75px;">
|
55 |
+
<thead>
|
56 |
+
<tr>
|
57 |
+
<th>Input news</th>
|
58 |
+
<th>Source (URL in Originality)</th>
|
59 |
+
<th>Forensic</th>
|
60 |
+
<th>Originality</th>
|
61 |
+
</tr>
|
62 |
+
</thead>
|
63 |
+
<tbody>
|
64 |
+
{table}
|
65 |
+
</tbody>
|
66 |
+
</table>
|
67 |
+
|
68 |
+
<style>
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
def format_text_governor_row(text):
|
73 |
+
input_sentences = ""
|
74 |
+
source_sentences = ""
|
75 |
+
source_text_urls = ""
|
76 |
+
urls = []
|
77 |
+
sentence_count = 0
|
78 |
+
entity_count = [0, 0] # to get index of [-2]
|
79 |
+
for row in text.governor_table:
|
80 |
+
if row[0]["input"] is None:
|
81 |
+
continue
|
82 |
+
|
83 |
+
if row[0]["source"] is not None: # source is not empty
|
84 |
+
# highlight entities
|
85 |
+
input_sentence, highlight_idx_input = apply_highlight(
|
86 |
+
row[0]["input"],
|
87 |
+
row[3], # entities_with_colors
|
88 |
+
"input", # key
|
89 |
+
entity_count[-2], # since the last one is for current counting
|
90 |
+
)
|
91 |
+
source_sentence, highlight_idx_source = apply_highlight(
|
92 |
+
row[0]["source"],
|
93 |
+
row[3], # entities_with_colors
|
94 |
+
"source", # key
|
95 |
+
entity_count[-2], # since the last one is for current counting
|
96 |
+
)
|
97 |
+
|
98 |
+
# Color overlapping words
|
99 |
+
input_sentence = color_text(
|
100 |
+
input_sentence,
|
101 |
+
row[1],
|
102 |
+
highlight_idx_input,
|
103 |
+
) # text, index of highlight words
|
104 |
+
source_sentence = color_text(
|
105 |
+
source_sentence,
|
106 |
+
row[2],
|
107 |
+
highlight_idx_source,
|
108 |
+
) # text, index of highlight words
|
109 |
+
|
110 |
+
input_sentence = input_sentence.replace(
|
111 |
+
"span_style",
|
112 |
+
"span style",
|
113 |
+
).replace("1px_4px", "1px 4px")
|
114 |
+
source_sentence = source_sentence.replace(
|
115 |
+
"span_style",
|
116 |
+
"span style",
|
117 |
+
).replace("1px_4px", "1px 4px")
|
118 |
+
|
119 |
+
else:
|
120 |
+
if row[0]["source"] is None:
|
121 |
+
source_sentence = ""
|
122 |
+
else:
|
123 |
+
source_sentence = row[0]["source"]
|
124 |
+
input_sentence = row[0]["input"]
|
125 |
+
|
126 |
+
# convert score to HUMAN-based score:
|
127 |
+
input_sentences += input_sentence + "<br><br>"
|
128 |
+
source_sentences += source_sentence + "<br><br>"
|
129 |
+
|
130 |
+
url = row[0]["url"]
|
131 |
+
if url not in urls:
|
132 |
+
urls.append(url)
|
133 |
+
source_text_urls += f"""<a href="{url}">{url}</a><br><br>"""
|
134 |
+
sentence_count += 1
|
135 |
+
if row[3] is not None:
|
136 |
+
entity_count.append(len(row[3]))
|
137 |
+
|
138 |
+
entity_count_text = format_entity_count(sum(entity_count))
|
139 |
+
return f"""
|
140 |
+
<tr>
|
141 |
+
<td>{input_sentences}</td>
|
142 |
+
<td>{source_sentences}</td>
|
143 |
+
<td>{text.prediction_label[0]}<br>
|
144 |
+
({text.prediction_score[0] * 100:.2f}%)<br><br>
|
145 |
+
{entity_count_text}</td>
|
146 |
+
<td style="{WORD_BREAK}";>{source_text_urls}</td>
|
147 |
+
</tr>
|
148 |
+
"""
|
149 |
+
|
150 |
+
|
151 |
+
def format_image_governor_row(image):
|
152 |
+
if image.referent_url is not None or image.referent_url != "":
|
153 |
+
source_image = f"""<img src="{image.referent_url}" width="100" height="150">""" # noqa: E501
|
154 |
+
source_image_url = f"""<a href="{image.referent_url}">{image.referent_url}</a>""" # noqa: E501
|
155 |
+
else:
|
156 |
+
source_image = "Image not found"
|
157 |
+
source_image_url = ""
|
158 |
+
|
159 |
+
return f"""
|
160 |
+
<tr>
|
161 |
+
<td>input image</td>
|
162 |
+
<td>{source_image}</td>
|
163 |
+
<td>{image.prediction_label}<br>({image.prediction_score:.2f}%)</td>
|
164 |
+
<td style="{WORD_BREAK}";>{source_image_url}</td>
|
165 |
+
</tr>"""
|
src/application/formatting_ordinary_user.py
CHANGED
@@ -1,10 +1,18 @@
|
|
|
|
|
|
1 |
from src.application.config import WORD_BREAK
|
|
|
|
|
2 |
|
3 |
|
4 |
-
def create_ordinary_user_table(
|
|
|
|
|
|
|
|
|
5 |
rows = []
|
6 |
-
rows.append(
|
7 |
-
rows.append(
|
8 |
table = "\n".join(rows)
|
9 |
|
10 |
return f"""
|
@@ -28,60 +36,56 @@ def create_ordinary_user_table(self):
|
|
28 |
<style>
|
29 |
"""
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
input_sentences = ""
|
33 |
-
|
34 |
urls = []
|
35 |
-
for _, row in
|
36 |
if row["input"] is None:
|
37 |
continue
|
38 |
-
|
39 |
input_sentences += row["input"] + "<br><br>"
|
40 |
url = row["url"]
|
41 |
if url not in urls:
|
42 |
urls.append(url)
|
43 |
-
|
44 |
|
45 |
return f"""
|
46 |
<tr>
|
47 |
<td>{input_sentences}</td>
|
48 |
-
<td>{
|
49 |
-
({
|
50 |
-
<td style="{WORD_BREAK}";>{
|
51 |
</tr>
|
52 |
"""
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
image_prediction_label: str,
|
57 |
-
image_prediction_score: float,
|
58 |
-
):
|
59 |
"""
|
60 |
-
Formats an HTML table row for ordinary users,
|
61 |
displaying image analysis results.
|
62 |
|
63 |
Args:
|
64 |
-
|
65 |
-
image_prediction_label (str): The predicted label for the image.
|
66 |
-
image_prediction_score (float): The prediction score for the image.
|
67 |
|
68 |
Returns:
|
69 |
str: An HTML table row string containing the image analysis results.
|
70 |
"""
|
71 |
|
72 |
# Put image, label, and score into html tag
|
73 |
-
if
|
74 |
-
|
75 |
-
or image_referent_url != ""
|
76 |
-
):
|
77 |
-
source_image_url = f"""<a href="{image_referent_url}">{image_referent_url}</a>""" # noqa: E501
|
78 |
else:
|
79 |
-
|
80 |
|
81 |
return f"""
|
82 |
<tr>
|
83 |
<td>input image</td>
|
84 |
-
<td>{
|
85 |
-
<td style="{WORD_BREAK}";>{
|
86 |
</tr>
|
87 |
-
"""
|
|
|
1 |
+
from pandas import DataFrame
|
2 |
+
|
3 |
from src.application.config import WORD_BREAK
|
4 |
+
from src.application.image.image import ImageDetector
|
5 |
+
from src.application.text.text import TextDetector
|
6 |
|
7 |
|
8 |
+
def create_ordinary_user_table(
|
9 |
+
aligned_sentences_df: DataFrame,
|
10 |
+
text: TextDetector,
|
11 |
+
image: ImageDetector,
|
12 |
+
) -> str:
|
13 |
rows = []
|
14 |
+
rows.append(format_image_ordinary_user_row(image))
|
15 |
+
rows.append(format_text_ordinary_user_row(aligned_sentences_df, text))
|
16 |
table = "\n".join(rows)
|
17 |
|
18 |
return f"""
|
|
|
36 |
<style>
|
37 |
"""
|
38 |
|
39 |
+
|
40 |
+
def format_text_ordinary_user_row(
|
41 |
+
aligned_sentences_df,
|
42 |
+
text,
|
43 |
+
) -> str:
|
44 |
input_sentences = ""
|
45 |
+
source_text_html = ""
|
46 |
urls = []
|
47 |
+
for _, row in aligned_sentences_df.iterrows():
|
48 |
if row["input"] is None:
|
49 |
continue
|
50 |
+
|
51 |
input_sentences += row["input"] + "<br><br>"
|
52 |
url = row["url"]
|
53 |
if url not in urls:
|
54 |
urls.append(url)
|
55 |
+
source_text_html += f"""<a href="{url}">{url}</a><br>"""
|
56 |
|
57 |
return f"""
|
58 |
<tr>
|
59 |
<td>{input_sentences}</td>
|
60 |
+
<td>{text.prediction_label[0]}<br>
|
61 |
+
({text.prediction_score[0] * 100:.2f}%)</td>
|
62 |
+
<td style="{WORD_BREAK}";>{source_text_html}</td>
|
63 |
</tr>
|
64 |
"""
|
65 |
|
66 |
+
|
67 |
+
def format_image_ordinary_user_row(image: ImageDetector) -> str:
|
|
|
|
|
|
|
68 |
"""
|
69 |
+
Formats an HTML table row for ordinary users,
|
70 |
displaying image analysis results.
|
71 |
|
72 |
Args:
|
73 |
+
image (ImageDetector): The image to be analyzed.
|
|
|
|
|
74 |
|
75 |
Returns:
|
76 |
str: An HTML table row string containing the image analysis results.
|
77 |
"""
|
78 |
|
79 |
# Put image, label, and score into html tag
|
80 |
+
if image.referent_url is not None or image.referent_url != "":
|
81 |
+
source_image_html = f"""<a href="{image.referent_url}">{image.referent_url}</a>""" # noqa: E501
|
|
|
|
|
|
|
82 |
else:
|
83 |
+
source_image_html = ""
|
84 |
|
85 |
return f"""
|
86 |
<tr>
|
87 |
<td>input image</td>
|
88 |
+
<td>{image.prediction_label}<br>({image.prediction_score:.2f}%)</td>
|
89 |
+
<td style="{WORD_BREAK}";>{source_image_html}</td>
|
90 |
</tr>
|
91 |
+
"""
|
src/application/image/image.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ImageDetector:
|
2 |
+
def __init__(self):
|
3 |
+
self.referent_url: str = None # URL of the referenced image.
|
4 |
+
self.prediction_label: str = None
|
5 |
+
self.prediction_score: float = None
|
src/application/text/helper.py
CHANGED
@@ -296,11 +296,11 @@ def postprocess_label(labels: list[str]) -> str:
|
|
296 |
prefix = "Partially generated by "
|
297 |
for index, label in enumerate(labels):
|
298 |
if label.startswith(prefix):
|
299 |
-
labels[index] = label[len(prefix):]
|
300 |
-
|
301 |
labels = list(set(labels))
|
302 |
label = prefix
|
303 |
-
|
304 |
if len(labels) == 1:
|
305 |
label += labels[0]
|
306 |
elif len(labels) == 2:
|
@@ -371,12 +371,14 @@ def split_into_paragraphs(input_text: str) -> list[str]:
|
|
371 |
return out_paragraphs
|
372 |
|
373 |
|
374 |
-
def extract_starts_ends(
|
|
|
|
|
375 |
"""
|
376 |
Extracts start and end indices from a list of dictionaries.
|
377 |
|
378 |
Args:
|
379 |
-
colored_idx (list[dict]): A list of dictionaries,
|
380 |
where each dictionary has 'start' and 'end' keys.
|
381 |
|
382 |
Returns:
|
@@ -392,19 +394,23 @@ def extract_starts_ends(colored_idx: list[dict]) -> tuple[list[int], list[int]]:
|
|
392 |
return starts, ends
|
393 |
|
394 |
|
395 |
-
def filter_indices(
|
|
|
|
|
|
|
|
|
396 |
"""
|
397 |
Filters start and end indices to exclude any indices present in the
|
398 |
ignore_indices list.
|
399 |
|
400 |
Args:
|
401 |
starts (list[int]): A list of starting indices.
|
402 |
-
ends (list[int]): A list of ending indices.
|
403 |
Must be the same length as starts.
|
404 |
ignore_indices (list[int]): A list of indices to exclude.
|
405 |
|
406 |
Returns:
|
407 |
-
A tuple of two lists of integers:
|
408 |
- filtered_starts
|
409 |
- filtered_ends
|
410 |
Returns empty lists if the input is invalid
|
@@ -454,9 +460,13 @@ def filter_indices(starts: list[int], ends: list[int], ignore_indices: list[int]
|
|
454 |
return filtered_starts, filtered_ends
|
455 |
|
456 |
|
457 |
-
def extract_new_startend(
|
|
|
|
|
|
|
|
|
458 |
"""
|
459 |
-
Extracts new start and end indices by splitting a range based on
|
460 |
ignored indices.
|
461 |
|
462 |
Args:
|
@@ -476,7 +486,7 @@ def extract_new_startend(start: int, end: int, ignore_indices: list[int]) -> tup
|
|
476 |
new_starts = []
|
477 |
new_ends = []
|
478 |
new_start = start
|
479 |
-
|
480 |
# If no indices to ignore, return the original range.
|
481 |
if indexes is None or len(indexes) < 1:
|
482 |
new_starts.append(start)
|
@@ -489,7 +499,7 @@ def extract_new_startend(start: int, end: int, ignore_indices: list[int]) -> tup
|
|
489 |
continue
|
490 |
elif index >= end:
|
491 |
continue
|
492 |
-
|
493 |
new_starts.append(new_start)
|
494 |
new_ends.append(index)
|
495 |
|
@@ -498,4 +508,4 @@ def extract_new_startend(start: int, end: int, ignore_indices: list[int]) -> tup
|
|
498 |
new_starts.append(new_start)
|
499 |
new_ends.append(end)
|
500 |
|
501 |
-
return new_starts, new_ends
|
|
|
296 |
prefix = "Partially generated by "
|
297 |
for index, label in enumerate(labels):
|
298 |
if label.startswith(prefix):
|
299 |
+
labels[index] = label[len(prefix) :]
|
300 |
+
|
301 |
labels = list(set(labels))
|
302 |
label = prefix
|
303 |
+
|
304 |
if len(labels) == 1:
|
305 |
label += labels[0]
|
306 |
elif len(labels) == 2:
|
|
|
371 |
return out_paragraphs
|
372 |
|
373 |
|
374 |
+
def extract_starts_ends(
|
375 |
+
colored_idx: list[dict],
|
376 |
+
) -> tuple[list[int], list[int]]:
|
377 |
"""
|
378 |
Extracts start and end indices from a list of dictionaries.
|
379 |
|
380 |
Args:
|
381 |
+
colored_idx (list[dict]): A list of dictionaries,
|
382 |
where each dictionary has 'start' and 'end' keys.
|
383 |
|
384 |
Returns:
|
|
|
394 |
return starts, ends
|
395 |
|
396 |
|
397 |
+
def filter_indices(
|
398 |
+
starts: list[int],
|
399 |
+
ends: list[int],
|
400 |
+
ignore_indices: list[int],
|
401 |
+
):
|
402 |
"""
|
403 |
Filters start and end indices to exclude any indices present in the
|
404 |
ignore_indices list.
|
405 |
|
406 |
Args:
|
407 |
starts (list[int]): A list of starting indices.
|
408 |
+
ends (list[int]): A list of ending indices.
|
409 |
Must be the same length as starts.
|
410 |
ignore_indices (list[int]): A list of indices to exclude.
|
411 |
|
412 |
Returns:
|
413 |
+
A tuple of two lists of integers:
|
414 |
- filtered_starts
|
415 |
- filtered_ends
|
416 |
Returns empty lists if the input is invalid
|
|
|
460 |
return filtered_starts, filtered_ends
|
461 |
|
462 |
|
463 |
+
def extract_new_startend(
|
464 |
+
start: int,
|
465 |
+
end: int,
|
466 |
+
ignore_indices: list[int],
|
467 |
+
) -> tuple[list[int], list[int]]:
|
468 |
"""
|
469 |
+
Extracts new start and end indices by splitting a range based on
|
470 |
ignored indices.
|
471 |
|
472 |
Args:
|
|
|
486 |
new_starts = []
|
487 |
new_ends = []
|
488 |
new_start = start
|
489 |
+
|
490 |
# If no indices to ignore, return the original range.
|
491 |
if indexes is None or len(indexes) < 1:
|
492 |
new_starts.append(start)
|
|
|
499 |
continue
|
500 |
elif index >= end:
|
501 |
continue
|
502 |
+
|
503 |
new_starts.append(new_start)
|
504 |
new_ends.append(index)
|
505 |
|
|
|
508 |
new_starts.append(new_start)
|
509 |
new_ends.append(end)
|
510 |
|
511 |
+
return new_starts, new_ends
|
src/application/text/search_detection.py
CHANGED
@@ -3,6 +3,7 @@ Author: Khanh Phan
|
|
3 |
Date: 2024-12-04
|
4 |
"""
|
5 |
|
|
|
6 |
import warnings
|
7 |
|
8 |
import numpy as np
|
@@ -229,7 +230,7 @@ def check_paraphrase(input_text: str, source_text: str, url: str) -> dict:
|
|
229 |
return alignment
|
230 |
|
231 |
|
232 |
-
def determine_label(similarity: float) -> tuple[str
|
233 |
"""
|
234 |
Determines a label and paraphrase status based on the similarity score.
|
235 |
|
|
|
3 |
Date: 2024-12-04
|
4 |
"""
|
5 |
|
6 |
+
from typing import Optional
|
7 |
import warnings
|
8 |
|
9 |
import numpy as np
|
|
|
230 |
return alignment
|
231 |
|
232 |
|
233 |
+
def determine_label(similarity: float) -> tuple[Optional[str], bool]:
|
234 |
"""
|
235 |
Determines a label and paraphrase status based on the similarity score.
|
236 |
|
src/application/text/text.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
class TextDetector:
|
5 |
+
def __init__(self):
|
6 |
+
self.prediction_label: list[str] = ["UNKNOWN"]
|
7 |
+
self.prediction_score: list[float] = [0.0]
|
8 |
+
|
9 |
+
self.grouped_url_df: pd.DataFrame = pd.DataFrame()
|
10 |
+
|
11 |
+
# For formatting ouput tables
|
12 |
+
self.ordinary_user_table: list = []
|
13 |
+
self.fact_checker_table: list = []
|
14 |
+
self.governor_table: list = []
|