Spaces:
Sleeping
Sleeping
Commit
·
bfe6692
1
Parent(s):
62dc9d8
pre-commit
Browse files- gpt_test.py +41 -21
- src/application/content_detection.py +118 -85
- src/application/text/entity.py +1 -1
- src/application/text/helper.py +3 -2
- src/application/text/model_detection.py +15 -10
- src/application/text/search_detection.py +28 -16
- test.py +1 -1
gpt_test.py
CHANGED
@@ -1,28 +1,35 @@
|
|
|
|
1 |
import os
|
2 |
|
3 |
from dotenv import load_dotenv
|
4 |
-
from openai import
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
-
import csv
|
8 |
-
|
9 |
def get_first_column(csv_filepath):
|
10 |
"""
|
11 |
-
Reads a CSV file with a header and returns a list containing only the
|
12 |
values from the first column.
|
13 |
|
14 |
Args:
|
15 |
csv_filepath: The path to the CSV file.
|
16 |
|
17 |
Returns:
|
18 |
-
A list of strings, where each string is a value from the first
|
19 |
-
column of the CSV file.
|
20 |
-
|
|
|
21 |
Prints an error message to the console in case of file errors.
|
22 |
"""
|
23 |
first_column_values = []
|
24 |
try:
|
25 |
-
with open(
|
|
|
|
|
|
|
|
|
26 |
reader = csv.reader(csvfile)
|
27 |
next(reader, None) # Skip the header row (if it exists)
|
28 |
|
@@ -32,21 +39,29 @@ def get_first_column(csv_filepath):
|
|
32 |
|
33 |
except FileNotFoundError:
|
34 |
print(f"Error: File not found at {csv_filepath}")
|
35 |
-
except
|
|
|
|
|
36 |
print(f"An error occurred: {e}")
|
37 |
-
|
38 |
return first_column_values
|
39 |
|
|
|
40 |
def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
41 |
"""
|
42 |
Adds text to a single-column CSV file (UTF-8 encoding).
|
43 |
|
44 |
Args:
|
45 |
csv_filepath: The path to the CSV file.
|
46 |
-
text_to_add: The text to append to
|
47 |
"""
|
48 |
try:
|
49 |
-
with open(
|
|
|
|
|
|
|
|
|
|
|
50 |
writer = csv.writer(csvfile)
|
51 |
|
52 |
# Check if file is empty to determine if header needs to be written
|
@@ -58,13 +73,18 @@ def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
|
58 |
|
59 |
if isinstance(text_to_add, list): # Check if text_to_add is a list
|
60 |
for text_item in text_to_add:
|
61 |
-
writer.writerow(
|
|
|
|
|
62 |
else: # If not a list, assume it's a single string
|
63 |
-
writer.writerow(
|
|
|
|
|
64 |
|
65 |
except Exception as e:
|
66 |
print(f"An error occurred: {e}")
|
67 |
|
|
|
68 |
load_dotenv()
|
69 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
70 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
@@ -76,25 +96,25 @@ azure_client = AzureOpenAI(
|
|
76 |
api_version="2024-05-01-preview",
|
77 |
)
|
78 |
|
79 |
-
deplopment_name = "gpt-4o-mini"
|
80 |
TEXT_PROMPT = """
|
81 |
Paraphrase the following news, only output the paraphrased text:
|
82 |
|
83 |
"""
|
84 |
text = get_first_column("data/MAGE.csv")
|
85 |
-
count
|
86 |
for index, news in enumerate(text):
|
87 |
if count > 1000:
|
88 |
break
|
89 |
prompt = TEXT_PROMPT + news
|
90 |
print(f"{index:5}:\t{news[:50]}")
|
91 |
-
#print(f"{index:5}:\t{prompt}")
|
92 |
-
|
93 |
try:
|
94 |
response = azure_client.chat.completions.create(
|
95 |
model=deplopment_name, # model = "deployment_name".
|
96 |
messages=[
|
97 |
-
# {"role": "system", "content": "You
|
98 |
{"role": "user", "content": prompt},
|
99 |
],
|
100 |
# max_tokens=512,
|
@@ -103,8 +123,8 @@ for index, news in enumerate(text):
|
|
103 |
except OpenAIError as e:
|
104 |
print(f"Error interacting with OpenAI API: {e}")
|
105 |
continue
|
106 |
-
|
107 |
count += 1
|
108 |
paraphrased_news = response.choices[0].message.content
|
109 |
-
|
110 |
add_text_to_csv("data/MAGE_4o_mini.csv", paraphrased_news, count)
|
|
|
1 |
+
import csv
|
2 |
import os
|
3 |
|
4 |
from dotenv import load_dotenv
|
5 |
+
from openai import (
|
6 |
+
AzureOpenAI,
|
7 |
+
OpenAIError,
|
8 |
+
)
|
9 |
|
10 |
|
|
|
|
|
11 |
def get_first_column(csv_filepath):
|
12 |
"""
|
13 |
+
Reads a CSV file with a header and returns a list containing only the
|
14 |
values from the first column.
|
15 |
|
16 |
Args:
|
17 |
csv_filepath: The path to the CSV file.
|
18 |
|
19 |
Returns:
|
20 |
+
A list of strings, where each string is a value from the first
|
21 |
+
column of the CSV file.
|
22 |
+
Returns an empty list if there's an error opening or reading
|
23 |
+
the file, or if the file has no rows after the header.
|
24 |
Prints an error message to the console in case of file errors.
|
25 |
"""
|
26 |
first_column_values = []
|
27 |
try:
|
28 |
+
with open(
|
29 |
+
csv_filepath,
|
30 |
+
newline="",
|
31 |
+
encoding="utf-8",
|
32 |
+
) as csvfile: # Handle potential encoding issues
|
33 |
reader = csv.reader(csvfile)
|
34 |
next(reader, None) # Skip the header row (if it exists)
|
35 |
|
|
|
39 |
|
40 |
except FileNotFoundError:
|
41 |
print(f"Error: File not found at {csv_filepath}")
|
42 |
+
except (
|
43 |
+
Exception
|
44 |
+
) as e: # Catch other potential errors (e.g., UnicodeDecodeError)
|
45 |
print(f"An error occurred: {e}")
|
46 |
+
|
47 |
return first_column_values
|
48 |
|
49 |
+
|
50 |
def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
51 |
"""
|
52 |
Adds text to a single-column CSV file (UTF-8 encoding).
|
53 |
|
54 |
Args:
|
55 |
csv_filepath: The path to the CSV file.
|
56 |
+
text_to_add: The text to append to CSV file (one value per new row).
|
57 |
"""
|
58 |
try:
|
59 |
+
with open(
|
60 |
+
csv_filepath,
|
61 |
+
"a",
|
62 |
+
newline="",
|
63 |
+
encoding="utf-8",
|
64 |
+
) as csvfile: # 'a' for append mode
|
65 |
writer = csv.writer(csvfile)
|
66 |
|
67 |
# Check if file is empty to determine if header needs to be written
|
|
|
73 |
|
74 |
if isinstance(text_to_add, list): # Check if text_to_add is a list
|
75 |
for text_item in text_to_add:
|
76 |
+
writer.writerow(
|
77 |
+
[index, text_item],
|
78 |
+
) # Write text_item as a single-element row
|
79 |
else: # If not a list, assume it's a single string
|
80 |
+
writer.writerow(
|
81 |
+
[index, text_to_add],
|
82 |
+
) # Write text_to_add as a single-element row
|
83 |
|
84 |
except Exception as e:
|
85 |
print(f"An error occurred: {e}")
|
86 |
|
87 |
+
|
88 |
load_dotenv()
|
89 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
90 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
|
|
96 |
api_version="2024-05-01-preview",
|
97 |
)
|
98 |
|
99 |
+
deplopment_name = "gpt-4o-mini" # "o1-mini" # or "gpt-4o"
|
100 |
TEXT_PROMPT = """
|
101 |
Paraphrase the following news, only output the paraphrased text:
|
102 |
|
103 |
"""
|
104 |
text = get_first_column("data/MAGE.csv")
|
105 |
+
count = 0
|
106 |
for index, news in enumerate(text):
|
107 |
if count > 1000:
|
108 |
break
|
109 |
prompt = TEXT_PROMPT + news
|
110 |
print(f"{index:5}:\t{news[:50]}")
|
111 |
+
# print(f"{index:5}:\t{prompt}")
|
112 |
+
|
113 |
try:
|
114 |
response = azure_client.chat.completions.create(
|
115 |
model=deplopment_name, # model = "deployment_name".
|
116 |
messages=[
|
117 |
+
# {"role": "system", "content": "You're an assistant."},
|
118 |
{"role": "user", "content": prompt},
|
119 |
],
|
120 |
# max_tokens=512,
|
|
|
123 |
except OpenAIError as e:
|
124 |
print(f"Error interacting with OpenAI API: {e}")
|
125 |
continue
|
126 |
+
|
127 |
count += 1
|
128 |
paraphrased_news = response.choices[0].message.content
|
129 |
+
|
130 |
add_text_to_csv("data/MAGE_4o_mini.csv", paraphrased_news, count)
|
src/application/content_detection.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from difflib import SequenceMatcher
|
2 |
|
3 |
-
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
from src.application.image.image_detection import (
|
@@ -13,7 +12,10 @@ from src.application.text.entity import (
|
|
13 |
highlight_entities,
|
14 |
)
|
15 |
from src.application.text.helper import extract_equal_text
|
16 |
-
from src.application.text.model_detection import
|
|
|
|
|
|
|
17 |
from src.application.text.preprocessing import split_into_paragraphs
|
18 |
from src.application.text.search_detection import (
|
19 |
PARAPHRASE_THRESHOLD_MACHINE,
|
@@ -30,17 +32,17 @@ class NewsVerification:
|
|
30 |
|
31 |
self.text_prediction_label: list[str] = ["UNKNOWN"]
|
32 |
self.text_prediction_score: list[float] = [0.0]
|
33 |
-
|
34 |
self.image_prediction_label: list[str] = ["UNKNOWN"]
|
35 |
self.image_prediction_score: list[str] = [0.0]
|
36 |
self.image_referent_url: list[str] = []
|
37 |
-
|
38 |
self.news_prediction_label = ""
|
39 |
self.news_prediction_score = -1
|
40 |
|
41 |
# news' urls to find img
|
42 |
self.found_img_url: list[str] = []
|
43 |
-
|
44 |
# Analyzed results
|
45 |
self.aligned_paragraphs_df: pd.DataFrame = pd.DataFrame(
|
46 |
columns=[
|
@@ -69,24 +71,26 @@ class NewsVerification:
|
|
69 |
|
70 |
def determine_text_origin(self):
|
71 |
self.find_text_source()
|
72 |
-
|
73 |
# Group inout and source by url
|
74 |
def concat_text(series):
|
75 |
-
return
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
{
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
self.grouped_url_df = self.grouped_url_df.reset_index()
|
84 |
# Add new columns for label and score
|
85 |
self.grouped_url_df["label"] = None
|
86 |
self.grouped_url_df["score"] = None
|
87 |
-
|
88 |
print(f"aligned_paragraphs_df:\n {self.aligned_paragraphs_df}")
|
89 |
-
|
90 |
for index, row in self.grouped_url_df.iterrows():
|
91 |
label, score = self.verify_text(row["url"])
|
92 |
if label == "UNKNOWN":
|
@@ -95,18 +99,21 @@ class NewsVerification:
|
|
95 |
|
96 |
# detect by baseline model
|
97 |
label, score = detect_text_by_ai_model(text)
|
98 |
-
|
99 |
self.grouped_url_df.at[index, "label"] = label
|
100 |
self.grouped_url_df.at[index, "score"] = score
|
101 |
|
102 |
# Overall label or score for the whole input text
|
103 |
if len(self.grouped_url_df) > 0:
|
104 |
-
# filter self.aligned_paragraphs_df["label"] if inclucind substring MACHINE
|
105 |
machine_label = self.grouped_url_df[
|
106 |
-
self.grouped_url_df["label"].str.contains(
|
|
|
|
|
|
|
|
|
107 |
]
|
108 |
# machine_label = self.aligned_paragraphs_df[
|
109 |
-
# self.aligned_paragraphs_df["label"] == "MACHINE"
|
110 |
# ]
|
111 |
if len(machine_label) > 0:
|
112 |
label = " ".join(machine_label["label"].tolist())
|
@@ -118,14 +125,14 @@ class NewsVerification:
|
|
118 |
]
|
119 |
self.text_prediction_label[0] = "HUMAN"
|
120 |
self.text_prediction_score[0] = machine_label["score"].mean()
|
121 |
-
else: # no source found in the input text
|
122 |
print("No source found in the input text")
|
123 |
text = " ".join(self.aligned_paragraphs_df["input"].tolist())
|
124 |
# detect by baseline model
|
125 |
-
label, score = detect_text_by_ai_model(text)
|
126 |
self.text_prediction_label[0] = label
|
127 |
self.text_prediction_score[0] = score
|
128 |
-
|
129 |
def find_text_source(self):
|
130 |
"""
|
131 |
Determines the origin of the given text based on paraphrasing detection
|
@@ -148,15 +155,22 @@ class NewsVerification:
|
|
148 |
|
149 |
for _ in range(len(input_sentences)):
|
150 |
self.aligned_paragraphs_df = pd.concat(
|
151 |
-
[
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
ignore_index=True,
|
161 |
)
|
162 |
|
@@ -183,7 +197,8 @@ class NewsVerification:
|
|
183 |
def verify_text(self, url):
|
184 |
label = "UNKNOWN"
|
185 |
score = 0
|
186 |
-
# calculate the average similarity when the similary score
|
|
|
187 |
filtered_by_url = self.aligned_paragraphs_df[
|
188 |
self.aligned_paragraphs_df["url"] == url
|
189 |
]
|
@@ -192,17 +207,24 @@ class NewsVerification:
|
|
192 |
]
|
193 |
if len(filtered_by_similarity) / len(self.aligned_paragraphs_df) > 0.5:
|
194 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
195 |
-
contains_machine =
|
196 |
-
"
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
if contains_machine:
|
199 |
label = "MACHINE"
|
200 |
machine_rows = filtered_by_similarity[
|
201 |
filtered_by_similarity["label"].str.contains(
|
202 |
"MACHINE",
|
203 |
case=False,
|
204 |
-
na=False
|
205 |
-
|
|
|
206 |
generated_model, _ = predict_generation_model(self.news_text)
|
207 |
label += f"<br>({generated_model})"
|
208 |
score = machine_rows["similarity"].mean()
|
@@ -212,12 +234,12 @@ class NewsVerification:
|
|
212 |
filtered_by_similarity["label"].str.contains(
|
213 |
"HUMAN",
|
214 |
case=False,
|
215 |
-
na=False
|
216 |
-
|
|
|
217 |
score = human_rows["similarity"].mean()
|
218 |
-
|
219 |
return label, score
|
220 |
-
|
221 |
|
222 |
def determine_image_origin(self):
|
223 |
print("CHECK IMAGE:")
|
@@ -267,14 +289,14 @@ class NewsVerification:
|
|
267 |
self.determine_image_origin()
|
268 |
|
269 |
def analyze_details(self):
|
270 |
-
self.handle_entities()
|
271 |
ordinary_user_table = self.create_ordinary_user_table()
|
272 |
fact_checker_table = self.create_fact_checker_table()
|
273 |
governor_table = self.create_governor_table()
|
274 |
|
275 |
return ordinary_user_table, fact_checker_table, governor_table
|
276 |
-
|
277 |
-
def handle_entities(self):
|
278 |
entities_with_colors = []
|
279 |
for index, row in self.grouped_url_df.iterrows():
|
280 |
# Get entity-words (in pair) with colors
|
@@ -283,12 +305,11 @@ class NewsVerification:
|
|
283 |
row["source"],
|
284 |
)
|
285 |
|
286 |
-
#self.grouped_url_df.at[index, "entities"] = entities_with_colors # must use at
|
287 |
-
|
288 |
for index, paragraph in self.aligned_paragraphs_df.iterrows():
|
289 |
if paragraph["url"] == row["url"]:
|
290 |
-
self.aligned_paragraphs_df.at[index, "entities"] =
|
291 |
-
|
|
|
292 |
|
293 |
def get_text_urls(self):
|
294 |
return set(self.text_referent_url)
|
@@ -336,13 +357,13 @@ class NewsVerification:
|
|
336 |
rows.append(self.format_image_fact_checker_row(max_length))
|
337 |
|
338 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
339 |
-
if row["input"]
|
340 |
continue
|
341 |
-
|
342 |
-
if row["source"]
|
343 |
equal_idx_1 = equal_idx_2 = []
|
344 |
-
|
345 |
-
else:
|
346 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
347 |
row["input"],
|
348 |
row["source"],
|
@@ -354,33 +375,42 @@ class NewsVerification:
|
|
354 |
equal_idx_1,
|
355 |
equal_idx_2,
|
356 |
row["entities"],
|
357 |
-
row["url"]
|
358 |
],
|
359 |
)
|
360 |
-
|
361 |
previous_url = None
|
362 |
span_row = 1
|
363 |
-
for index, row in enumerate(self.fact_checker_table):
|
364 |
current_url = row[4]
|
365 |
last_url_row = False
|
366 |
-
|
367 |
# First row or URL change
|
368 |
if index == 0 or current_url != previous_url:
|
369 |
first_url_row = True
|
370 |
previous_url = current_url
|
371 |
# Increase counter "span_row" when the next url is the same
|
372 |
-
while
|
373 |
-
|
|
|
|
|
|
|
374 |
span_row += 1
|
375 |
-
|
376 |
else:
|
377 |
first_url_row = False
|
378 |
span_row -= 1
|
379 |
-
|
380 |
if span_row == 1:
|
381 |
last_url_row = True
|
382 |
-
|
383 |
-
formatted_row = self.format_text_fact_checker_row(
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
rows.append(formatted_row)
|
385 |
|
386 |
table = "\n".join(rows)
|
@@ -436,7 +466,7 @@ class NewsVerification:
|
|
436 |
source_sentence = row[0]["source"]
|
437 |
highlight_idx_input = []
|
438 |
highlight_idx_source = []
|
439 |
-
|
440 |
if row[3] is not None:
|
441 |
entity_count = len(row[3])
|
442 |
|
@@ -453,7 +483,7 @@ class NewsVerification:
|
|
453 |
) # text, index of highlight words
|
454 |
|
455 |
# Replace _ to get correct formatting
|
456 |
-
# Original one having _ for correct word counting
|
457 |
input_sentence = input_sentence.replace(
|
458 |
"span_style",
|
459 |
"span style",
|
@@ -468,24 +498,22 @@ class NewsVerification:
|
|
468 |
|
469 |
url = row[0]["url"]
|
470 |
# Displayed label and score by url
|
471 |
-
filterby_url = self.grouped_url_df[
|
472 |
-
self.grouped_url_df["url"] == url
|
473 |
-
]
|
474 |
if len(filterby_url) > 0:
|
475 |
label = filterby_url["label"].values[0]
|
476 |
score = filterby_url["score"].values[0]
|
477 |
-
else:
|
478 |
label = self.text_prediction_label[0]
|
479 |
score = self.text_prediction_score[0]
|
480 |
|
481 |
# Format displayed url
|
482 |
-
|
483 |
short_url = self.shorten_url(url, max_length)
|
484 |
source_text_url = f"""<a href="{url}">{short_url}</a>"""
|
485 |
|
486 |
# Format displayed entity count
|
487 |
entity_count_text = self.get_entity_count_text(entity_count)
|
488 |
-
|
489 |
border_top = "border-top: 1px solid transparent;"
|
490 |
border_bottom = "border-bottom: 1px solid transparent;"
|
491 |
if first_url_row is True:
|
@@ -580,7 +608,7 @@ class NewsVerification:
|
|
580 |
source_text_urls = ""
|
581 |
urls = []
|
582 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
583 |
-
if row["input"]
|
584 |
continue
|
585 |
input_sentences += row["input"] + "<br><br>"
|
586 |
url = row["url"]
|
@@ -620,13 +648,13 @@ class NewsVerification:
|
|
620 |
rows.append(self.format_image_governor_row(max_length))
|
621 |
|
622 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
623 |
-
if row["input"]
|
624 |
continue
|
625 |
-
|
626 |
-
if row["source"]
|
627 |
equal_idx_1 = equal_idx_2 = []
|
628 |
-
|
629 |
-
else:
|
630 |
# Get index of equal phrases in input and source sentences
|
631 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
632 |
row["input"],
|
@@ -680,19 +708,25 @@ class NewsVerification:
|
|
680 |
if row[0]["input"] is None:
|
681 |
continue
|
682 |
|
683 |
-
if
|
|
|
|
|
684 |
# highlight entities
|
685 |
input_sentence, highlight_idx_input = apply_highlight(
|
686 |
row[0]["input"],
|
687 |
row[3], # entities_with_colors
|
688 |
"input", # key
|
689 |
-
entity_count[
|
|
|
|
|
690 |
)
|
691 |
source_sentence, highlight_idx_source = apply_highlight(
|
692 |
row[0]["source"],
|
693 |
row[3], # entities_with_colors
|
694 |
"source", # key
|
695 |
-
entity_count[
|
|
|
|
|
696 |
)
|
697 |
|
698 |
# Color overlapping words
|
@@ -722,12 +756,11 @@ class NewsVerification:
|
|
722 |
else:
|
723 |
source_sentence = row[0]["source"]
|
724 |
input_sentence = row[0]["input"]
|
725 |
-
|
726 |
|
727 |
# convert score to HUMAN-based score:
|
728 |
input_sentences += input_sentence + "<br><br>"
|
729 |
source_sentences += source_sentence + "<br><br>"
|
730 |
-
|
731 |
url = row[0]["url"]
|
732 |
if url not in urls:
|
733 |
urls.append(url)
|
@@ -736,7 +769,7 @@ class NewsVerification:
|
|
736 |
sentence_count += 1
|
737 |
if row[3] is not None:
|
738 |
entity_count.append(len(row[3]))
|
739 |
-
|
740 |
entity_count_text = self.get_entity_count_text(sum(entity_count))
|
741 |
|
742 |
return f"""
|
@@ -791,7 +824,7 @@ class NewsVerification:
|
|
791 |
|
792 |
starts, ends = self.extract_starts_ends(colored_idx)
|
793 |
starts, ends = self.filter_indices(starts, ends, highlighted_idx)
|
794 |
-
|
795 |
previous_end = 0
|
796 |
for start, end in zip(starts, ends):
|
797 |
paragraph += " ".join(words[previous_end:start])
|
@@ -892,4 +925,4 @@ class NewsVerification:
|
|
892 |
starts.append(start)
|
893 |
ends.append(end)
|
894 |
|
895 |
-
return starts, ends
|
|
|
1 |
from difflib import SequenceMatcher
|
2 |
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
from src.application.image.image_detection import (
|
|
|
12 |
highlight_entities,
|
13 |
)
|
14 |
from src.application.text.helper import extract_equal_text
|
15 |
+
from src.application.text.model_detection import (
|
16 |
+
detect_text_by_ai_model,
|
17 |
+
predict_generation_model,
|
18 |
+
)
|
19 |
from src.application.text.preprocessing import split_into_paragraphs
|
20 |
from src.application.text.search_detection import (
|
21 |
PARAPHRASE_THRESHOLD_MACHINE,
|
|
|
32 |
|
33 |
self.text_prediction_label: list[str] = ["UNKNOWN"]
|
34 |
self.text_prediction_score: list[float] = [0.0]
|
35 |
+
|
36 |
self.image_prediction_label: list[str] = ["UNKNOWN"]
|
37 |
self.image_prediction_score: list[str] = [0.0]
|
38 |
self.image_referent_url: list[str] = []
|
39 |
+
|
40 |
self.news_prediction_label = ""
|
41 |
self.news_prediction_score = -1
|
42 |
|
43 |
# news' urls to find img
|
44 |
self.found_img_url: list[str] = []
|
45 |
+
|
46 |
# Analyzed results
|
47 |
self.aligned_paragraphs_df: pd.DataFrame = pd.DataFrame(
|
48 |
columns=[
|
|
|
71 |
|
72 |
def determine_text_origin(self):
|
73 |
self.find_text_source()
|
74 |
+
|
75 |
# Group inout and source by url
|
76 |
def concat_text(series):
|
77 |
+
return " ".join(
|
78 |
+
series.astype(str).tolist(),
|
79 |
+
) # Handle mixed data types and NaNs
|
80 |
+
|
81 |
+
self.grouped_url_df = self.aligned_paragraphs_df.groupby("url").agg(
|
82 |
{
|
83 |
+
"input": concat_text,
|
84 |
+
"source": concat_text,
|
85 |
+
},
|
86 |
+
)
|
87 |
self.grouped_url_df = self.grouped_url_df.reset_index()
|
88 |
# Add new columns for label and score
|
89 |
self.grouped_url_df["label"] = None
|
90 |
self.grouped_url_df["score"] = None
|
91 |
+
|
92 |
print(f"aligned_paragraphs_df:\n {self.aligned_paragraphs_df}")
|
93 |
+
|
94 |
for index, row in self.grouped_url_df.iterrows():
|
95 |
label, score = self.verify_text(row["url"])
|
96 |
if label == "UNKNOWN":
|
|
|
99 |
|
100 |
# detect by baseline model
|
101 |
label, score = detect_text_by_ai_model(text)
|
102 |
+
|
103 |
self.grouped_url_df.at[index, "label"] = label
|
104 |
self.grouped_url_df.at[index, "score"] = score
|
105 |
|
106 |
# Overall label or score for the whole input text
|
107 |
if len(self.grouped_url_df) > 0:
|
|
|
108 |
machine_label = self.grouped_url_df[
|
109 |
+
self.grouped_url_df["label"].str.contains(
|
110 |
+
"MACHINE",
|
111 |
+
case=False,
|
112 |
+
na=False,
|
113 |
+
)
|
114 |
]
|
115 |
# machine_label = self.aligned_paragraphs_df[
|
116 |
+
# self.aligned_paragraphs_df["label"] == "MACHINE"
|
117 |
# ]
|
118 |
if len(machine_label) > 0:
|
119 |
label = " ".join(machine_label["label"].tolist())
|
|
|
125 |
]
|
126 |
self.text_prediction_label[0] = "HUMAN"
|
127 |
self.text_prediction_score[0] = machine_label["score"].mean()
|
128 |
+
else: # no source found in the input text
|
129 |
print("No source found in the input text")
|
130 |
text = " ".join(self.aligned_paragraphs_df["input"].tolist())
|
131 |
# detect by baseline model
|
132 |
+
label, score = detect_text_by_ai_model(text)
|
133 |
self.text_prediction_label[0] = label
|
134 |
self.text_prediction_score[0] = score
|
135 |
+
|
136 |
def find_text_source(self):
|
137 |
"""
|
138 |
Determines the origin of the given text based on paraphrasing detection
|
|
|
155 |
|
156 |
for _ in range(len(input_sentences)):
|
157 |
self.aligned_paragraphs_df = pd.concat(
|
158 |
+
[
|
159 |
+
self.aligned_paragraphs_df,
|
160 |
+
pd.DataFrame(
|
161 |
+
[
|
162 |
+
{
|
163 |
+
"input": None,
|
164 |
+
"source": None,
|
165 |
+
"label": None,
|
166 |
+
"similarity": None,
|
167 |
+
"paraphrase": None,
|
168 |
+
"url": None,
|
169 |
+
"entities": None,
|
170 |
+
},
|
171 |
+
],
|
172 |
+
),
|
173 |
+
],
|
174 |
ignore_index=True,
|
175 |
)
|
176 |
|
|
|
197 |
def verify_text(self, url):
|
198 |
label = "UNKNOWN"
|
199 |
score = 0
|
200 |
+
# calculate the average similarity when the similary score
|
201 |
+
# in each row of sentences_df is higher than 0.8
|
202 |
filtered_by_url = self.aligned_paragraphs_df[
|
203 |
self.aligned_paragraphs_df["url"] == url
|
204 |
]
|
|
|
207 |
]
|
208 |
if len(filtered_by_similarity) / len(self.aligned_paragraphs_df) > 0.5:
|
209 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
210 |
+
contains_machine = (
|
211 |
+
filtered_by_similarity["label"]
|
212 |
+
.str.contains(
|
213 |
+
"MACHINE",
|
214 |
+
case=False,
|
215 |
+
na=False,
|
216 |
+
)
|
217 |
+
.any()
|
218 |
+
)
|
219 |
if contains_machine:
|
220 |
label = "MACHINE"
|
221 |
machine_rows = filtered_by_similarity[
|
222 |
filtered_by_similarity["label"].str.contains(
|
223 |
"MACHINE",
|
224 |
case=False,
|
225 |
+
na=False,
|
226 |
+
)
|
227 |
+
]
|
228 |
generated_model, _ = predict_generation_model(self.news_text)
|
229 |
label += f"<br>({generated_model})"
|
230 |
score = machine_rows["similarity"].mean()
|
|
|
234 |
filtered_by_similarity["label"].str.contains(
|
235 |
"HUMAN",
|
236 |
case=False,
|
237 |
+
na=False,
|
238 |
+
)
|
239 |
+
]
|
240 |
score = human_rows["similarity"].mean()
|
241 |
+
|
242 |
return label, score
|
|
|
243 |
|
244 |
def determine_image_origin(self):
|
245 |
print("CHECK IMAGE:")
|
|
|
289 |
self.determine_image_origin()
|
290 |
|
291 |
def analyze_details(self):
|
292 |
+
self.handle_entities()
|
293 |
ordinary_user_table = self.create_ordinary_user_table()
|
294 |
fact_checker_table = self.create_fact_checker_table()
|
295 |
governor_table = self.create_governor_table()
|
296 |
|
297 |
return ordinary_user_table, fact_checker_table, governor_table
|
298 |
+
|
299 |
+
def handle_entities(self):
|
300 |
entities_with_colors = []
|
301 |
for index, row in self.grouped_url_df.iterrows():
|
302 |
# Get entity-words (in pair) with colors
|
|
|
305 |
row["source"],
|
306 |
)
|
307 |
|
|
|
|
|
308 |
for index, paragraph in self.aligned_paragraphs_df.iterrows():
|
309 |
if paragraph["url"] == row["url"]:
|
310 |
+
self.aligned_paragraphs_df.at[index, "entities"] = (
|
311 |
+
entities_with_colors # must use at
|
312 |
+
)
|
313 |
|
314 |
def get_text_urls(self):
|
315 |
return set(self.text_referent_url)
|
|
|
357 |
rows.append(self.format_image_fact_checker_row(max_length))
|
358 |
|
359 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
360 |
+
if row["input"] is None:
|
361 |
continue
|
362 |
+
|
363 |
+
if row["source"] is None:
|
364 |
equal_idx_1 = equal_idx_2 = []
|
365 |
+
|
366 |
+
else: # Get index of equal phrases in input and source sentences
|
367 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
368 |
row["input"],
|
369 |
row["source"],
|
|
|
375 |
equal_idx_1,
|
376 |
equal_idx_2,
|
377 |
row["entities"],
|
378 |
+
row["url"],
|
379 |
],
|
380 |
)
|
381 |
+
|
382 |
previous_url = None
|
383 |
span_row = 1
|
384 |
+
for index, row in enumerate(self.fact_checker_table):
|
385 |
current_url = row[4]
|
386 |
last_url_row = False
|
387 |
+
|
388 |
# First row or URL change
|
389 |
if index == 0 or current_url != previous_url:
|
390 |
first_url_row = True
|
391 |
previous_url = current_url
|
392 |
# Increase counter "span_row" when the next url is the same
|
393 |
+
while (
|
394 |
+
index + span_row < len(self.fact_checker_table)
|
395 |
+
and self.fact_checker_table[index + span_row][4]
|
396 |
+
== current_url
|
397 |
+
):
|
398 |
span_row += 1
|
399 |
+
|
400 |
else:
|
401 |
first_url_row = False
|
402 |
span_row -= 1
|
403 |
+
|
404 |
if span_row == 1:
|
405 |
last_url_row = True
|
406 |
+
|
407 |
+
formatted_row = self.format_text_fact_checker_row(
|
408 |
+
row,
|
409 |
+
first_url_row,
|
410 |
+
last_url_row,
|
411 |
+
span_row,
|
412 |
+
max_length,
|
413 |
+
)
|
414 |
rows.append(formatted_row)
|
415 |
|
416 |
table = "\n".join(rows)
|
|
|
466 |
source_sentence = row[0]["source"]
|
467 |
highlight_idx_input = []
|
468 |
highlight_idx_source = []
|
469 |
+
|
470 |
if row[3] is not None:
|
471 |
entity_count = len(row[3])
|
472 |
|
|
|
483 |
) # text, index of highlight words
|
484 |
|
485 |
# Replace _ to get correct formatting
|
486 |
+
# Original one having _ for correct word counting
|
487 |
input_sentence = input_sentence.replace(
|
488 |
"span_style",
|
489 |
"span style",
|
|
|
498 |
|
499 |
url = row[0]["url"]
|
500 |
# Displayed label and score by url
|
501 |
+
filterby_url = self.grouped_url_df[self.grouped_url_df["url"] == url]
|
|
|
|
|
502 |
if len(filterby_url) > 0:
|
503 |
label = filterby_url["label"].values[0]
|
504 |
score = filterby_url["score"].values[0]
|
505 |
+
else:
|
506 |
label = self.text_prediction_label[0]
|
507 |
score = self.text_prediction_score[0]
|
508 |
|
509 |
# Format displayed url
|
510 |
+
|
511 |
short_url = self.shorten_url(url, max_length)
|
512 |
source_text_url = f"""<a href="{url}">{short_url}</a>"""
|
513 |
|
514 |
# Format displayed entity count
|
515 |
entity_count_text = self.get_entity_count_text(entity_count)
|
516 |
+
|
517 |
border_top = "border-top: 1px solid transparent;"
|
518 |
border_bottom = "border-bottom: 1px solid transparent;"
|
519 |
if first_url_row is True:
|
|
|
608 |
source_text_urls = ""
|
609 |
urls = []
|
610 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
611 |
+
if row["input"] is None:
|
612 |
continue
|
613 |
input_sentences += row["input"] + "<br><br>"
|
614 |
url = row["url"]
|
|
|
648 |
rows.append(self.format_image_governor_row(max_length))
|
649 |
|
650 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
651 |
+
if row["input"] is None:
|
652 |
continue
|
653 |
+
|
654 |
+
if row["source"] is None:
|
655 |
equal_idx_1 = equal_idx_2 = []
|
656 |
+
|
657 |
+
else:
|
658 |
# Get index of equal phrases in input and source sentences
|
659 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
660 |
row["input"],
|
|
|
708 |
if row[0]["input"] is None:
|
709 |
continue
|
710 |
|
711 |
+
if (
|
712 |
+
row[0]["source"] is not None and row[3] is not None
|
713 |
+
): # source is not empty
|
714 |
# highlight entities
|
715 |
input_sentence, highlight_idx_input = apply_highlight(
|
716 |
row[0]["input"],
|
717 |
row[3], # entities_with_colors
|
718 |
"input", # key
|
719 |
+
entity_count[
|
720 |
+
-2
|
721 |
+
], # since the last one is for current counting
|
722 |
)
|
723 |
source_sentence, highlight_idx_source = apply_highlight(
|
724 |
row[0]["source"],
|
725 |
row[3], # entities_with_colors
|
726 |
"source", # key
|
727 |
+
entity_count[
|
728 |
+
-2
|
729 |
+
], # since the last one is for current counting
|
730 |
)
|
731 |
|
732 |
# Color overlapping words
|
|
|
756 |
else:
|
757 |
source_sentence = row[0]["source"]
|
758 |
input_sentence = row[0]["input"]
|
|
|
759 |
|
760 |
# convert score to HUMAN-based score:
|
761 |
input_sentences += input_sentence + "<br><br>"
|
762 |
source_sentences += source_sentence + "<br><br>"
|
763 |
+
|
764 |
url = row[0]["url"]
|
765 |
if url not in urls:
|
766 |
urls.append(url)
|
|
|
769 |
sentence_count += 1
|
770 |
if row[3] is not None:
|
771 |
entity_count.append(len(row[3]))
|
772 |
+
|
773 |
entity_count_text = self.get_entity_count_text(sum(entity_count))
|
774 |
|
775 |
return f"""
|
|
|
824 |
|
825 |
starts, ends = self.extract_starts_ends(colored_idx)
|
826 |
starts, ends = self.filter_indices(starts, ends, highlighted_idx)
|
827 |
+
|
828 |
previous_end = 0
|
829 |
for start, end in zip(starts, ends):
|
830 |
paragraph += " ".join(words[previous_end:start])
|
|
|
925 |
starts.append(start)
|
926 |
ends.append(end)
|
927 |
|
928 |
+
return starts, ends
|
src/application/text/entity.py
CHANGED
@@ -161,7 +161,7 @@ def assign_colors_to_entities(entities):
|
|
161 |
|
162 |
|
163 |
def highlight_entities(text1, text2):
|
164 |
-
if text1
|
165 |
return None
|
166 |
|
167 |
entities_text = extract_entities_gpt(text1, text2)
|
|
|
161 |
|
162 |
|
163 |
def highlight_entities(text1, text2):
|
164 |
+
if text1 is None or text2 is None:
|
165 |
return None
|
166 |
|
167 |
entities_text = extract_entities_gpt(text1, text2)
|
src/application/text/helper.py
CHANGED
@@ -147,7 +147,7 @@ def extract_equal_text(text1, text2):
|
|
147 |
text = text.lower()
|
148 |
text = text.translate(str.maketrans("", "", string.punctuation))
|
149 |
return text
|
150 |
-
|
151 |
splited_text1 = cleanup(text1).split()
|
152 |
splited_text2 = cleanup(text2).split()
|
153 |
|
@@ -163,7 +163,8 @@ def extract_equal_text(text1, text2):
|
|
163 |
equal_idx_2.append({"start": j1, "end": j2})
|
164 |
# subtext_1 = " ".join(text1[i1:i2])
|
165 |
# subtext_2 = " ".join(text2[j1:j2])
|
166 |
-
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j1:2}]
|
|
|
167 |
return equal_idx_1, equal_idx_2
|
168 |
|
169 |
|
|
|
147 |
text = text.lower()
|
148 |
text = text.translate(str.maketrans("", "", string.punctuation))
|
149 |
return text
|
150 |
+
|
151 |
splited_text1 = cleanup(text1).split()
|
152 |
splited_text2 = cleanup(text2).split()
|
153 |
|
|
|
163 |
equal_idx_2.append({"start": j1, "end": j2})
|
164 |
# subtext_1 = " ".join(text1[i1:i2])
|
165 |
# subtext_2 = " ".join(text2[j1:j2])
|
166 |
+
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j1:2}]
|
167 |
+
# {subtext_1!r:>55} --> {subtext_2!r}')
|
168 |
return equal_idx_1, equal_idx_2
|
169 |
|
170 |
|
src/application/text/model_detection.py
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import os
|
3 |
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from openai import AzureOpenAI, OpenAIError
|
6 |
-
from sentence_transformers import SentenceTransformer, util
|
7 |
import torch
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
load_dotenv()
|
11 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
@@ -74,7 +79,7 @@ def detect_text_by_ai_model(
|
|
74 |
return UNKNOWN, 0.5 # Return UNKNOWN and 0.0 confidence if error
|
75 |
|
76 |
|
77 |
-
def predict_generation_model(text:str) -> tuple[str, float]:
|
78 |
"""
|
79 |
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
|
80 |
Compare the input text against the paraphrased text by the models.
|
@@ -94,7 +99,7 @@ def predict_generation_model(text:str) -> tuple[str, float]:
|
|
94 |
if similarity > best_similarity:
|
95 |
best_similarity = similarity
|
96 |
best_model = model
|
97 |
-
|
98 |
return best_model, best_similarity
|
99 |
|
100 |
|
@@ -125,8 +130,9 @@ Paraphrase the following news, only output the paraphrased text:
|
|
125 |
return paraphrased_text
|
126 |
except OpenAIError as e: # Add exception handling
|
127 |
print(f"Error in AI model inference: {e}")
|
128 |
-
return None
|
129 |
-
|
|
|
130 |
def measure_text_similarity(text1: str, text2: str) -> float:
|
131 |
"""
|
132 |
Measure the similarity between two texts.
|
@@ -151,4 +157,3 @@ def measure_text_similarity(text1: str, text2: str) -> float:
|
|
151 |
similarity = util.cos_sim(embeddings1, embeddings2).cpu().numpy()
|
152 |
print(similarity[0][0])
|
153 |
return similarity[0][0]
|
154 |
-
|
|
|
|
|
1 |
import os
|
2 |
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from openai import (
|
6 |
+
AzureOpenAI,
|
7 |
+
OpenAIError,
|
8 |
+
)
|
9 |
+
from sentence_transformers import (
|
10 |
+
SentenceTransformer,
|
11 |
+
util,
|
12 |
+
)
|
13 |
+
from transformers import pipeline
|
14 |
|
15 |
load_dotenv()
|
16 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
|
|
79 |
return UNKNOWN, 0.5 # Return UNKNOWN and 0.0 confidence if error
|
80 |
|
81 |
|
82 |
+
def predict_generation_model(text: str) -> tuple[str, float]:
|
83 |
"""
|
84 |
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
|
85 |
Compare the input text against the paraphrased text by the models.
|
|
|
99 |
if similarity > best_similarity:
|
100 |
best_similarity = similarity
|
101 |
best_model = model
|
102 |
+
|
103 |
return best_model, best_similarity
|
104 |
|
105 |
|
|
|
130 |
return paraphrased_text
|
131 |
except OpenAIError as e: # Add exception handling
|
132 |
print(f"Error in AI model inference: {e}")
|
133 |
+
return None
|
134 |
+
|
135 |
+
|
136 |
def measure_text_similarity(text1: str, text2: str) -> float:
|
137 |
"""
|
138 |
Measure the similarity between two texts.
|
|
|
157 |
similarity = util.cos_sim(embeddings1, embeddings2).cpu().numpy()
|
158 |
print(similarity[0][0])
|
159 |
return similarity[0][0]
|
|
src/application/text/search_detection.py
CHANGED
@@ -75,23 +75,26 @@ def find_paragraph_source(text, text_index, sentences_df):
|
|
75 |
)
|
76 |
|
77 |
if aligned_sentence["paraphrase"] is False:
|
78 |
-
sentences_df.loc[text_index, "input"] = aligned_sentence[
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
return sentences_df, []
|
81 |
-
|
82 |
# assign values
|
83 |
columns = [
|
84 |
"input",
|
85 |
-
"source",
|
86 |
-
"label",
|
87 |
-
"similarity",
|
88 |
-
"paraphrase",
|
89 |
"url",
|
90 |
-
|
91 |
for c in columns:
|
92 |
if c in sentences_df.columns:
|
93 |
sentences_df.loc[text_index, c] = aligned_sentence[c]
|
94 |
-
|
95 |
|
96 |
for idx, _ in sentences_df.iterrows():
|
97 |
similarity = sentences_df.loc[idx, "similarity"]
|
@@ -106,12 +109,20 @@ def find_paragraph_source(text, text_index, sentences_df):
|
|
106 |
url,
|
107 |
)
|
108 |
|
109 |
-
if
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return sentences_df, content.images
|
116 |
|
117 |
sentences_df.loc[text_index, "input"] = text[text_index]
|
@@ -266,7 +277,7 @@ def check_paraphrase(input_text, page_text, url):
|
|
266 |
|
267 |
label, is_paraphrased = determine_label(max_similarity)
|
268 |
best_matched_paragraph = page_paragraphs[max_sim_index]
|
269 |
-
|
270 |
alignment = {
|
271 |
"input": paragraph,
|
272 |
"source": best_matched_paragraph,
|
@@ -317,6 +328,7 @@ def check_human(alligned_sentences):
|
|
317 |
return True
|
318 |
return False
|
319 |
|
|
|
320 |
def determine_label(similarity):
|
321 |
if similarity >= PARAPHRASE_THRESHOLD_HUMAN:
|
322 |
return "HUMAN", True
|
|
|
75 |
)
|
76 |
|
77 |
if aligned_sentence["paraphrase"] is False:
|
78 |
+
sentences_df.loc[text_index, "input"] = aligned_sentence[
|
79 |
+
"input"
|
80 |
+
]
|
81 |
+
sentences_df.loc[text_index, "paraphrase"] = (
|
82 |
+
aligned_sentence["paraphrase"]
|
83 |
+
)
|
84 |
return sentences_df, []
|
85 |
+
|
86 |
# assign values
|
87 |
columns = [
|
88 |
"input",
|
89 |
+
"source",
|
90 |
+
"label",
|
91 |
+
"similarity",
|
92 |
+
"paraphrase",
|
93 |
"url",
|
94 |
+
]
|
95 |
for c in columns:
|
96 |
if c in sentences_df.columns:
|
97 |
sentences_df.loc[text_index, c] = aligned_sentence[c]
|
|
|
98 |
|
99 |
for idx, _ in sentences_df.iterrows():
|
100 |
similarity = sentences_df.loc[idx, "similarity"]
|
|
|
109 |
url,
|
110 |
)
|
111 |
|
112 |
+
if (
|
113 |
+
similarity is None
|
114 |
+
or aligned_sentence["similarity"] > similarity
|
115 |
+
):
|
116 |
+
columns = [
|
117 |
+
"input",
|
118 |
+
"source",
|
119 |
+
"label",
|
120 |
+
"similarity",
|
121 |
+
"url",
|
122 |
+
]
|
123 |
+
for c in columns:
|
124 |
+
if c in sentences_df.columns:
|
125 |
+
sentences_df.loc[idx, c] = aligned_sentence[c]
|
126 |
return sentences_df, content.images
|
127 |
|
128 |
sentences_df.loc[text_index, "input"] = text[text_index]
|
|
|
277 |
|
278 |
label, is_paraphrased = determine_label(max_similarity)
|
279 |
best_matched_paragraph = page_paragraphs[max_sim_index]
|
280 |
+
|
281 |
alignment = {
|
282 |
"input": paragraph,
|
283 |
"source": best_matched_paragraph,
|
|
|
328 |
return True
|
329 |
return False
|
330 |
|
331 |
+
|
332 |
def determine_label(similarity):
|
333 |
if similarity >= PARAPHRASE_THRESHOLD_HUMAN:
|
334 |
return "HUMAN", True
|
test.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
my_list = [0, 0]
|
2 |
-
print(my_list[-2])
|
|
|
1 |
my_list = [0, 0]
|
2 |
+
print(my_list[-2])
|