Spaces:
Build error
Build error
wjm55
Update README to reflect changes in embedding response handling and adjust example usage
2e11453
title: Vector Endpoint | |
emoji: π | |
colorFrom: red | |
colorTo: indigo | |
sdk: docker | |
pinned: false | |
# Vector Endpoint | |
A simple API that converts text into vector embeddings using the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) sentence transformer model. | |
## API Reference | |
### Endpoint | |
``` | |
POST /vectorize | |
``` | |
### Request Format | |
```json | |
{ | |
"text": "Your text to be vectorized" | |
} | |
``` | |
### Response Format | |
```json | |
{ | |
"embedding": [0.123, 0.456, ...] // Vector representation of your text | |
} | |
``` | |
## Usage Examples | |
### cURL | |
```bash | |
curl -X 'POST' \ | |
'https://placingholocaust-vector-endpoint.hf.space/vectorize' \ | |
-H 'accept: application/json' \ | |
-H 'Content-Type: application/json' \ | |
-d '{ | |
"text": "This is a text" | |
}' | |
``` | |
### Python | |
```python | |
import requests | |
import json | |
url = "https://placingholocaust-vector-endpoint.hf.space/vectorize" | |
headers = { | |
"accept": "application/json", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"text": "This is a text" | |
} | |
response = requests.post(url, headers=headers, json=data) | |
result = response.json() | |
print(f"Embedding length: {len(result)}") | |
print(f"First few values: {result[:5]}") | |
``` | |
### JavaScript | |
```javascript | |
// Using fetch | |
async function getEmbedding(text) { | |
const response = await fetch( | |
"https://placingholocaust-vector-endpoint.hf.space/vectorize", | |
{ | |
method: "POST", | |
headers: { | |
"accept": "application/json", | |
"Content-Type": "application/json" | |
}, | |
body: JSON.stringify({ text }) | |
} | |
); | |
const data = await response.json(); | |
return data | |
} | |
// Example usage | |
getEmbedding("This is a text") | |
.then(embedding => { | |
console.log(`Embedding length: ${embedding.length}`); | |
console.log(`First few values: ${embedding.slice(0, 5)}`); | |
}) | |
.catch(error => console.error("Error:", error)); | |
``` | |
## Model Information | |
This endpoint uses the [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) model, which produces 768-dimensional embeddings that capture semantic meaning of text across multiple languages. | |