File size: 2,092 Bytes
67ad3cd
 
 
 
 
 
 
 
 
df0e186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e11453
 
df0e186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e11453
df0e186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
title: Vector Endpoint
emoji: πŸ“‰
colorFrom: red
colorTo: indigo
sdk: docker
pinned: false
---

# Vector Endpoint

A simple API that converts text into vector embeddings using the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) sentence transformer model.

## API Reference

### Endpoint

```
POST /vectorize
```

### Request Format

```json
{
  "text": "Your text to be vectorized"
}
```

### Response Format

```json
{
  "embedding": [0.123, 0.456, ...]  // Vector representation of your text
}
```

## Usage Examples

### cURL

```bash
curl -X 'POST' \
  'https://placingholocaust-vector-endpoint.hf.space/vectorize' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "text": "This is a text"
}'
```

### Python

```python
import requests
import json

url = "https://placingholocaust-vector-endpoint.hf.space/vectorize"
headers = {
    "accept": "application/json",
    "Content-Type": "application/json"
}
data = {
    "text": "This is a text"
}

response = requests.post(url, headers=headers, json=data)
result = response.json()

print(f"Embedding length: {len(result)}")
print(f"First few values: {result[:5]}")
```

### JavaScript

```javascript
// Using fetch
async function getEmbedding(text) {
  const response = await fetch(
    "https://placingholocaust-vector-endpoint.hf.space/vectorize", 
    {
      method: "POST",
      headers: {
        "accept": "application/json",
        "Content-Type": "application/json"
      },
      body: JSON.stringify({ text })
    }
  );
  
  const data = await response.json();
  return data
}

// Example usage
getEmbedding("This is a text")
  .then(embedding => {
    console.log(`Embedding length: ${embedding.length}`);
    console.log(`First few values: ${embedding.slice(0, 5)}`);
  })
  .catch(error => console.error("Error:", error));
```

## Model Information

This endpoint uses the [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) model, which produces 768-dimensional embeddings that capture semantic meaning of text across multiple languages.