syai4.1 / app.py
peterpeter8585's picture
Update app.py
ac66021 verified
raw
history blame
19.4 kB
from __future__ import annotations # type: ignore[import-not-found]
from subprocess import Popen, PIPE as P
from langchain_experimental.tools.python.tool import PythonREPLTool as PYT
from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type
from langchain.agents.agent_toolkits import create_retriever_tool as crt
from langchain_community.agent_toolkits import FileManagementToolkit as FMT
from langchain.tools import Tool,YouTubeSearchTool as YTS
from langchain.memory import ConversationBufferMemory as MEM,RedisChatMessageHistory as HIS
from langchain.schema import SystemMessage as SM,HumanMessage as HM, AIMessage as AM
from langchain import hub
import os
import torch
import importlib.util
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from pydantic import ConfigDict, model_validator
from import_utils import (
IMPORT_ERROR,
is_ipex_available,
is_openvino_available,
is_optimum_intel_available,
is_optimum_intel_version,
)
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = (
"text2text-generation",
"text-generation",
"summarization",
"translation",
)
DEFAULT_BATCH_SIZE = 4
_MIN_OPTIMUM_VERSION = "1.21"
logger = logging.getLogger(__name__)
class HuggingFacePipeline(BaseLLM):
global torch
"""HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation`, `text2text-generation`, `summarization` and
`translation` for now.
Example using from_model_id:
.. code-block:: python
from langchain_huggingface import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:
.. code-block:: python
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any = None #: :meta private:
model_id: Optional[str] = None
"""The model name. If not set explicitly by the user,
it will be inferred from the provided pipeline (if available).
If neither is provided, the DEFAULT_MODEL_ID will be used."""
model_kwargs: Optional[dict] = None
"""Keyword arguments passed to the model."""
pipeline_kwargs: Optional[dict] = None
"""Keyword arguments passed to the pipeline."""
batch_size: int = DEFAULT_BATCH_SIZE
"""Batch size to use when passing multiple documents to generate."""
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def pre_init_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Ensure model_id is set either by pipeline or user input."""
if "model_id" not in values:
if "pipeline" in values and values["pipeline"]:
values["model_id"] = values["pipeline"].model.name_or_path
else:
values["model_id"] = DEFAULT_MODEL_ID
return values
@classmethod
def from_model_id(
cls,
model_id: str,
task: str,
backend: str = "default",
device: Optional[int] = None,
device_map: Optional[str] = None,
model_kwargs: Optional[dict] = None,
pipeline_kwargs: Optional[dict] = None,
batch_size: int = DEFAULT_BATCH_SIZE,
**kwargs: Any,
) -> HuggingFacePipeline:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import ( # type: ignore[import]
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline # type: ignore[import]
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs.copy() if model_kwargs else {}
if device_map is not None:
if device is not None:
raise ValueError(
"Both `device` and `device_map` are specified. "
"`device` will override `device_map`. "
"You will most likely encounter unexpected behavior."
"Please remove `device` and keep "
"`device_map`."
)
if "device_map" in _model_kwargs:
raise ValueError("`device_map` is already specified in `model_kwargs`.")
_model_kwargs["device_map"] = device_map
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
if backend in {"openvino", "ipex"}:
if task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}'
if not is_optimum_intel_available():
raise ImportError(err_msg)
# TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release
min_optimum_version = (
"1.22"
if backend == "ipex" and task != "text-generation"
else _MIN_OPTIMUM_VERSION
)
if is_optimum_intel_version("<", min_optimum_version):
raise ImportError(
f"Backend: {backend} requires optimum-intel>="
f"{min_optimum_version}. You can install it with pip: "
"`pip install --upgrade --upgrade-strategy eager "
f"`optimum[{backend}]`."
)
if backend == "openvino":
if not is_openvino_available():
raise ImportError(err_msg)
from optimum.intel import ( # type: ignore[import]
OVModelForCausalLM,
OVModelForSeq2SeqLM,
)
model_cls = (
OVModelForCausalLM
if task == "text-generation"
else OVModelForSeq2SeqLM
)
else:
if not is_ipex_available():
raise ImportError(err_msg)
if task == "text-generation":
from optimum.intel import (
IPEXModelForCausalLM, # type: ignore[import]
)
model_cls = IPEXModelForCausalLM
else:
from optimum.intel import (
IPEXModelForSeq2SeqLM, # type: ignore[import]
)
model_cls = IPEXModelForSeq2SeqLM
else:
model_cls = (
AutoModelForCausalLM
if task == "text-generation"
else AutoModelForSeq2SeqLM
)
model = model_cls.from_pretrained(model_id, **_model_kwargs)
model=torch.compile(model,mode="max-autotune")
if tokenizer.pad_token is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None and isinstance(
model.config.eos_token_id, int
):
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if (
(
getattr(model, "is_loaded_in_4bit", False)
or getattr(model, "is_loaded_in_8bit", False)
)
and device is not None
and backend == "default"
):
logger.warning(
f"Setting the `device` argument to None from {device} to avoid "
"the error caused by attempting to move the model that was already "
"loaded on the GPU using the Accelerate module to the same or "
"another device."
)
device = None
if (
device is not None
and importlib.util.find_spec("torch") is not None
and backend == "default"
):
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device_map is not None and device < 0:
device = None
if device is not None and device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
if device is not None and device_map is not None and backend == "openvino":
logger.warning("Please set device for OpenVINO through: `model_kwargs`")
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
_pipeline_kwargs = pipeline_kwargs or {}
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
batch_size=batch_size,
model_kwargs=_model_kwargs,
**_pipeline_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
pipeline_kwargs=_pipeline_kwargs,
batch_size=batch_size,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
# List to hold all results
text_generations: List[str] = []
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
skip_prompt = kwargs.get("skip_prompt", False)
for i in range(0, len(prompts), self.batch_size):
batch_prompts = prompts[i : i + self.batch_size]
# Process batch of prompts
responses = self.pipeline(
batch_prompts,
**pipeline_kwargs,
)
# Process each response in the batch
for j, response in enumerate(responses):
if isinstance(response, list):
# if model returns multiple generations, pick the top one
response = response[0]
if self.pipeline.task == "text-generation":
text = response["generated_text"]
elif self.pipeline.task == "text2text-generation":
text = response["generated_text"]
elif self.pipeline.task == "summarization":
text = response["summary_text"]
elif self.pipeline.task in "translation":
text = response["translation_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if skip_prompt:
text = text[len(batch_prompts[j]) :]
# Append the processed text to results
text_generations.append(text)
return LLMResult(
generations=[[Generation(text=text)] for text in text_generations]
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
from threading import Thread
import torch
from transformers import (
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
skip_prompt = kwargs.get("skip_prompt", True)
if stop is not None:
stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop)
stopping_ids_list = stop or []
class StopOnTokens(StoppingCriteria):
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs: Any,
) -> bool:
for stop_id in stopping_ids_list:
if input_ids[0][-1] == stop_id:
return True
return False
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
streamer = TextIteratorStreamer(
self.pipeline.tokenizer,
timeout=60.0,
skip_prompt=skip_prompt,
skip_special_tokens=True,
)
generation_kwargs = dict(
text_inputs=prompt,
streamer=streamer,
stopping_criteria=stopping_criteria,
**pipeline_kwargs,
)
t1 = Thread(target=self.pipeline, kwargs=generation_kwargs)
t1.start()
for char in streamer:
chunk = GenerationChunk(text=char)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation'''
human = '''
{input}
{agent_scratchpad}
(reminder to respond in a JSON blob no matter what)'''
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
MessagesPlaceholder("chat_history", optional=True),
("human", human),
]
)
from typing import Any, Dict, List, Optional
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatResult, ChatGeneration
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
from langchain_core.runnables import run_in_executor
from transformers import AutoTokenizer, AutoModelForCausalLM
#from transformers import pipeline,AutoModelForCausalLM as M,AutoTokenizer as T
#m=M.from_pretrained("peterpeter8585/syai4.3")
#t=T.from_pretrained("peterpeter8585/syai4.3")
#pipe=pipeline(model=m,tokenizer=t,task="text-generation")
llm=HuggingFacePipeline.from_model_id(model_id="peterpeter8585/deepseek_1",task="text-generation")
from langchain.retrievers import WikipediaRetriever as Wiki
import gradio as gr
chatbot = gr.Chatbot(
label="SYAI4.1",
show_copy_button=True,
layout="panel"
)
def terminal(c):
a=Popen(c,shell=True,stdin=P,stdout=P,stderr=P)
return a.stdout.read()+a.stderr.read()
tools=FMT().get_tools()
tools.append(PYT())
tools.append(YTS())
tools.extend(load_tools(["requests_all"],allow_dangerous_tools=True))
tools.extend(load_tools(["llm-math","ddg-search"],llm=llm))
tools.append(Tool.from_function(func=terminal,name="terminal",description="터미널 명령어실행에 적합함"))
tools.append(crt(name="wiki",description="위키 백과를 검색하여 정보를 가져온다",retriever=Wiki(lang="ko",top_k_results=1)))
def chat(message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p, chat_session):
messages=[SM(content=system_message+"And, Your name is Chatchat")]
for val in history:
if val[0]:
messages.append(HM(content=val[0]))
if val[1]:
messages.append(AM(content=val[1]))
messages.append(HM(content=message))
memory=MEM(memory_key="history")
agent=Ex(agent=Agent(llm,tools,prompt),tools=tools,verbose=True,handle_parsing_errors=True,memory=memory)
return agent.invoke({"input":messages,"chat_history":memory.buffer_as_messages})
ai1=gr.ChatInterface(
chat,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Textbox(label="chat_id(please enter the chat id!)")
],
)
ai1.launch()