Spaces:
Runtime error
Runtime error
File size: 19,390 Bytes
9c60e9e b472985 ddb1584 e7a7122 b472985 f6ab55d e87659d b472985 59628b5 819f86e deeb1d7 819f86e ac66021 819f86e 60e1641 0e44529 fb0e311 0cb6fe1 fb0e311 71b33a1 f6ab55d b472985 a49d96b b472985 18f646d b472985 f6ab55d 2ed007f a84d38a 2ed007f b472985 a49d96b 73e0190 a49d96b d8f3d91 4175aba 8beef67 a49d96b b472985 a49d96b 6e86bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
from __future__ import annotations # type: ignore[import-not-found]
from subprocess import Popen, PIPE as P
from langchain_experimental.tools.python.tool import PythonREPLTool as PYT
from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type
from langchain.agents.agent_toolkits import create_retriever_tool as crt
from langchain_community.agent_toolkits import FileManagementToolkit as FMT
from langchain.tools import Tool,YouTubeSearchTool as YTS
from langchain.memory import ConversationBufferMemory as MEM,RedisChatMessageHistory as HIS
from langchain.schema import SystemMessage as SM,HumanMessage as HM, AIMessage as AM
from langchain import hub
import os
import torch
import importlib.util
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from pydantic import ConfigDict, model_validator
from import_utils import (
IMPORT_ERROR,
is_ipex_available,
is_openvino_available,
is_optimum_intel_available,
is_optimum_intel_version,
)
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = (
"text2text-generation",
"text-generation",
"summarization",
"translation",
)
DEFAULT_BATCH_SIZE = 4
_MIN_OPTIMUM_VERSION = "1.21"
logger = logging.getLogger(__name__)
class HuggingFacePipeline(BaseLLM):
global torch
"""HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation`, `text2text-generation`, `summarization` and
`translation` for now.
Example using from_model_id:
.. code-block:: python
from langchain_huggingface import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:
.. code-block:: python
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any = None #: :meta private:
model_id: Optional[str] = None
"""The model name. If not set explicitly by the user,
it will be inferred from the provided pipeline (if available).
If neither is provided, the DEFAULT_MODEL_ID will be used."""
model_kwargs: Optional[dict] = None
"""Keyword arguments passed to the model."""
pipeline_kwargs: Optional[dict] = None
"""Keyword arguments passed to the pipeline."""
batch_size: int = DEFAULT_BATCH_SIZE
"""Batch size to use when passing multiple documents to generate."""
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def pre_init_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Ensure model_id is set either by pipeline or user input."""
if "model_id" not in values:
if "pipeline" in values and values["pipeline"]:
values["model_id"] = values["pipeline"].model.name_or_path
else:
values["model_id"] = DEFAULT_MODEL_ID
return values
@classmethod
def from_model_id(
cls,
model_id: str,
task: str,
backend: str = "default",
device: Optional[int] = None,
device_map: Optional[str] = None,
model_kwargs: Optional[dict] = None,
pipeline_kwargs: Optional[dict] = None,
batch_size: int = DEFAULT_BATCH_SIZE,
**kwargs: Any,
) -> HuggingFacePipeline:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import ( # type: ignore[import]
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline # type: ignore[import]
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs.copy() if model_kwargs else {}
if device_map is not None:
if device is not None:
raise ValueError(
"Both `device` and `device_map` are specified. "
"`device` will override `device_map`. "
"You will most likely encounter unexpected behavior."
"Please remove `device` and keep "
"`device_map`."
)
if "device_map" in _model_kwargs:
raise ValueError("`device_map` is already specified in `model_kwargs`.")
_model_kwargs["device_map"] = device_map
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
if backend in {"openvino", "ipex"}:
if task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}'
if not is_optimum_intel_available():
raise ImportError(err_msg)
# TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release
min_optimum_version = (
"1.22"
if backend == "ipex" and task != "text-generation"
else _MIN_OPTIMUM_VERSION
)
if is_optimum_intel_version("<", min_optimum_version):
raise ImportError(
f"Backend: {backend} requires optimum-intel>="
f"{min_optimum_version}. You can install it with pip: "
"`pip install --upgrade --upgrade-strategy eager "
f"`optimum[{backend}]`."
)
if backend == "openvino":
if not is_openvino_available():
raise ImportError(err_msg)
from optimum.intel import ( # type: ignore[import]
OVModelForCausalLM,
OVModelForSeq2SeqLM,
)
model_cls = (
OVModelForCausalLM
if task == "text-generation"
else OVModelForSeq2SeqLM
)
else:
if not is_ipex_available():
raise ImportError(err_msg)
if task == "text-generation":
from optimum.intel import (
IPEXModelForCausalLM, # type: ignore[import]
)
model_cls = IPEXModelForCausalLM
else:
from optimum.intel import (
IPEXModelForSeq2SeqLM, # type: ignore[import]
)
model_cls = IPEXModelForSeq2SeqLM
else:
model_cls = (
AutoModelForCausalLM
if task == "text-generation"
else AutoModelForSeq2SeqLM
)
model = model_cls.from_pretrained(model_id, **_model_kwargs)
model=torch.compile(model,mode="max-autotune")
if tokenizer.pad_token is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None and isinstance(
model.config.eos_token_id, int
):
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if (
(
getattr(model, "is_loaded_in_4bit", False)
or getattr(model, "is_loaded_in_8bit", False)
)
and device is not None
and backend == "default"
):
logger.warning(
f"Setting the `device` argument to None from {device} to avoid "
"the error caused by attempting to move the model that was already "
"loaded on the GPU using the Accelerate module to the same or "
"another device."
)
device = None
if (
device is not None
and importlib.util.find_spec("torch") is not None
and backend == "default"
):
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device_map is not None and device < 0:
device = None
if device is not None and device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
if device is not None and device_map is not None and backend == "openvino":
logger.warning("Please set device for OpenVINO through: `model_kwargs`")
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
_pipeline_kwargs = pipeline_kwargs or {}
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
batch_size=batch_size,
model_kwargs=_model_kwargs,
**_pipeline_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
pipeline_kwargs=_pipeline_kwargs,
batch_size=batch_size,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
# List to hold all results
text_generations: List[str] = []
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
skip_prompt = kwargs.get("skip_prompt", False)
for i in range(0, len(prompts), self.batch_size):
batch_prompts = prompts[i : i + self.batch_size]
# Process batch of prompts
responses = self.pipeline(
batch_prompts,
**pipeline_kwargs,
)
# Process each response in the batch
for j, response in enumerate(responses):
if isinstance(response, list):
# if model returns multiple generations, pick the top one
response = response[0]
if self.pipeline.task == "text-generation":
text = response["generated_text"]
elif self.pipeline.task == "text2text-generation":
text = response["generated_text"]
elif self.pipeline.task == "summarization":
text = response["summary_text"]
elif self.pipeline.task in "translation":
text = response["translation_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if skip_prompt:
text = text[len(batch_prompts[j]) :]
# Append the processed text to results
text_generations.append(text)
return LLMResult(
generations=[[Generation(text=text)] for text in text_generations]
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
from threading import Thread
import torch
from transformers import (
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
skip_prompt = kwargs.get("skip_prompt", True)
if stop is not None:
stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop)
stopping_ids_list = stop or []
class StopOnTokens(StoppingCriteria):
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs: Any,
) -> bool:
for stop_id in stopping_ids_list:
if input_ids[0][-1] == stop_id:
return True
return False
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
streamer = TextIteratorStreamer(
self.pipeline.tokenizer,
timeout=60.0,
skip_prompt=skip_prompt,
skip_special_tokens=True,
)
generation_kwargs = dict(
text_inputs=prompt,
streamer=streamer,
stopping_criteria=stopping_criteria,
**pipeline_kwargs,
)
t1 = Thread(target=self.pipeline, kwargs=generation_kwargs)
t1.start()
for char in streamer:
chunk = GenerationChunk(text=char)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation'''
human = '''
{input}
{agent_scratchpad}
(reminder to respond in a JSON blob no matter what)'''
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
MessagesPlaceholder("chat_history", optional=True),
("human", human),
]
)
from typing import Any, Dict, List, Optional
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatResult, ChatGeneration
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
from langchain_core.runnables import run_in_executor
from transformers import AutoTokenizer, AutoModelForCausalLM
#from transformers import pipeline,AutoModelForCausalLM as M,AutoTokenizer as T
#m=M.from_pretrained("peterpeter8585/syai4.3")
#t=T.from_pretrained("peterpeter8585/syai4.3")
#pipe=pipeline(model=m,tokenizer=t,task="text-generation")
llm=HuggingFacePipeline.from_model_id(model_id="peterpeter8585/deepseek_1",task="text-generation")
from langchain.retrievers import WikipediaRetriever as Wiki
import gradio as gr
chatbot = gr.Chatbot(
label="SYAI4.1",
show_copy_button=True,
layout="panel"
)
def terminal(c):
a=Popen(c,shell=True,stdin=P,stdout=P,stderr=P)
return a.stdout.read()+a.stderr.read()
tools=FMT().get_tools()
tools.append(PYT())
tools.append(YTS())
tools.extend(load_tools(["requests_all"],allow_dangerous_tools=True))
tools.extend(load_tools(["llm-math","ddg-search"],llm=llm))
tools.append(Tool.from_function(func=terminal,name="terminal",description="터미널 명령어실행에 적합함"))
tools.append(crt(name="wiki",description="위키 백과를 검색하여 정보를 가져온다",retriever=Wiki(lang="ko",top_k_results=1)))
def chat(message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p, chat_session):
messages=[SM(content=system_message+"And, Your name is Chatchat")]
for val in history:
if val[0]:
messages.append(HM(content=val[0]))
if val[1]:
messages.append(AM(content=val[1]))
messages.append(HM(content=message))
memory=MEM(memory_key="history")
agent=Ex(agent=Agent(llm,tools,prompt),tools=tools,verbose=True,handle_parsing_errors=True,memory=memory)
return agent.invoke({"input":messages,"chat_history":memory.buffer_as_messages})
ai1=gr.ChatInterface(
chat,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Textbox(label="chat_id(please enter the chat id!)")
],
)
ai1.launch() |