from __future__ import annotations # type: ignore[import-not-found] from subprocess import Popen, PIPE as P from langchain_experimental.tools.python.tool import PythonREPLTool as PYT from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type from langchain.agents.agent_toolkits import create_retriever_tool as crt from langchain_community.agent_toolkits import FileManagementToolkit as FMT from langchain.tools import Tool,YouTubeSearchTool as YTS from langchain.memory import ConversationBufferMemory as MEM,RedisChatMessageHistory as HIS from langchain.schema import SystemMessage as SM,HumanMessage as HM, AIMessage as AM from langchain import hub import os import torch import importlib.util import logging from typing import Any, Dict, Iterator, List, Mapping, Optional from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult from pydantic import ConfigDict, model_validator from import_utils import ( IMPORT_ERROR, is_ipex_available, is_openvino_available, is_optimum_intel_available, is_optimum_intel_version, ) DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ( "text2text-generation", "text-generation", "summarization", "translation", ) DEFAULT_BATCH_SIZE = 4 _MIN_OPTIMUM_VERSION = "1.21" logger = logging.getLogger(__name__) class HuggingFacePipeline(BaseLLM): global torch """HuggingFace Pipeline API. To use, you should have the ``transformers`` python package installed. Only supports `text-generation`, `text2text-generation`, `summarization` and `translation` for now. Example using from_model_id: .. code-block:: python from langchain_huggingface import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) Example passing pipeline in directly: .. code-block:: python from langchain_huggingface import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) """ pipeline: Any = None #: :meta private: model_id: Optional[str] = None """The model name. If not set explicitly by the user, it will be inferred from the provided pipeline (if available). If neither is provided, the DEFAULT_MODEL_ID will be used.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" pipeline_kwargs: Optional[dict] = None """Keyword arguments passed to the pipeline.""" batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def pre_init_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Ensure model_id is set either by pipeline or user input.""" if "model_id" not in values: if "pipeline" in values and values["pipeline"]: values["model_id"] = values["pipeline"].model.name_or_path else: values["model_id"] = DEFAULT_MODEL_ID return values @classmethod def from_model_id( cls, model_id: str, task: str, backend: str = "default", device: Optional[int] = None, device_map: Optional[str] = None, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, batch_size: int = DEFAULT_BATCH_SIZE, **kwargs: Any, ) -> HuggingFacePipeline: """Construct the pipeline object from model_id and task.""" try: from transformers import ( # type: ignore[import] AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers import pipeline as hf_pipeline # type: ignore[import] except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) _model_kwargs = model_kwargs.copy() if model_kwargs else {} if device_map is not None: if device is not None: raise ValueError( "Both `device` and `device_map` are specified. " "`device` will override `device_map`. " "You will most likely encounter unexpected behavior." "Please remove `device` and keep " "`device_map`." ) if "device_map" in _model_kwargs: raise ValueError("`device_map` is already specified in `model_kwargs`.") _model_kwargs["device_map"] = device_map tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) if backend in {"openvino", "ipex"}: if task not in VALID_TASKS: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}' if not is_optimum_intel_available(): raise ImportError(err_msg) # TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release min_optimum_version = ( "1.22" if backend == "ipex" and task != "text-generation" else _MIN_OPTIMUM_VERSION ) if is_optimum_intel_version("<", min_optimum_version): raise ImportError( f"Backend: {backend} requires optimum-intel>=" f"{min_optimum_version}. You can install it with pip: " "`pip install --upgrade --upgrade-strategy eager " f"`optimum[{backend}]`." ) if backend == "openvino": if not is_openvino_available(): raise ImportError(err_msg) from optimum.intel import ( # type: ignore[import] OVModelForCausalLM, OVModelForSeq2SeqLM, ) model_cls = ( OVModelForCausalLM if task == "text-generation" else OVModelForSeq2SeqLM ) else: if not is_ipex_available(): raise ImportError(err_msg) if task == "text-generation": from optimum.intel import ( IPEXModelForCausalLM, # type: ignore[import] ) model_cls = IPEXModelForCausalLM else: from optimum.intel import ( IPEXModelForSeq2SeqLM, # type: ignore[import] ) model_cls = IPEXModelForSeq2SeqLM else: model_cls = ( AutoModelForCausalLM if task == "text-generation" else AutoModelForSeq2SeqLM ) model = model_cls.from_pretrained(model_id, **_model_kwargs) model=torch.compile(model,mode="max-autotune") if tokenizer.pad_token is None: if model.config.pad_token_id is not None: tokenizer.pad_token_id = model.config.pad_token_id elif model.config.eos_token_id is not None and isinstance( model.config.eos_token_id, int ): tokenizer.pad_token_id = model.config.eos_token_id elif tokenizer.eos_token_id is not None: tokenizer.pad_token_id = tokenizer.eos_token_id else: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) if ( ( getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) ) and device is not None and backend == "default" ): logger.warning( f"Setting the `device` argument to None from {device} to avoid " "the error caused by attempting to move the model that was already " "loaded on the GPU using the Accelerate module to the same or " "another device." ) device = None if ( device is not None and importlib.util.find_spec("torch") is not None and backend == "default" ): import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device_map is not None and device < 0: device = None if device is not None and device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 (default) for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) if device is not None and device_map is not None and backend == "openvino": logger.warning("Please set device for OpenVINO through: `model_kwargs`") if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } _pipeline_kwargs = pipeline_kwargs or {} pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, batch_size=batch_size, model_kwargs=_model_kwargs, **_pipeline_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, pipeline_kwargs=_pipeline_kwargs, batch_size=batch_size, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, "pipeline_kwargs": self.pipeline_kwargs, } @property def _llm_type(self) -> str: return "huggingface_pipeline" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: # List to hold all results text_generations: List[str] = [] pipeline_kwargs = kwargs.get("pipeline_kwargs", {}) skip_prompt = kwargs.get("skip_prompt", False) for i in range(0, len(prompts), self.batch_size): batch_prompts = prompts[i : i + self.batch_size] # Process batch of prompts responses = self.pipeline( batch_prompts, **pipeline_kwargs, ) # Process each response in the batch for j, response in enumerate(responses): if isinstance(response, list): # if model returns multiple generations, pick the top one response = response[0] if self.pipeline.task == "text-generation": text = response["generated_text"] elif self.pipeline.task == "text2text-generation": text = response["generated_text"] elif self.pipeline.task == "summarization": text = response["summary_text"] elif self.pipeline.task in "translation": text = response["translation_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if skip_prompt: text = text[len(batch_prompts[j]) :] # Append the processed text to results text_generations.append(text) return LLMResult( generations=[[Generation(text=text)] for text in text_generations] ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: from threading import Thread import torch from transformers import ( StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) pipeline_kwargs = kwargs.get("pipeline_kwargs", {}) skip_prompt = kwargs.get("skip_prompt", True) if stop is not None: stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop) stopping_ids_list = stop or [] class StopOnTokens(StoppingCriteria): def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs: Any, ) -> bool: for stop_id in stopping_ids_list: if input_ids[0][-1] == stop_id: return True return False stopping_criteria = StoppingCriteriaList([StopOnTokens()]) streamer = TextIteratorStreamer( self.pipeline.tokenizer, timeout=60.0, skip_prompt=skip_prompt, skip_special_tokens=True, ) generation_kwargs = dict( text_inputs=prompt, streamer=streamer, stopping_criteria=stopping_criteria, **pipeline_kwargs, ) t1 = Thread(target=self.pipeline, kwargs=generation_kwargs) t1.start() for char in streamer: chunk = GenerationChunk(text=char) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools: {tools} Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). Valid "action" values: "Final Answer" or {tool_names} Provide only ONE action per $JSON_BLOB, as shown: ``` {{ "action": $TOOL_NAME, "action_input": $INPUT }} ``` Follow this format: Question: input question to answer Thought: consider previous and subsequent steps Action: ``` $JSON_BLOB ``` Observation: action result ... (repeat Thought/Action/Observation N times) Thought: I know what to respond Action: ``` {{ "action": "Final Answer", "action_input": "Final response to human" }} Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation''' human = ''' {input} {agent_scratchpad} (reminder to respond in a JSON blob no matter what)''' prompt = ChatPromptTemplate.from_messages( [ ("system", system), MessagesPlaceholder("chat_history", optional=True), ("human", human), ] ) from typing import Any, Dict, List, Optional from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage, BaseMessage, HumanMessage from langchain_core.outputs import ChatResult, ChatGeneration from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun from langchain_core.runnables import run_in_executor from transformers import AutoTokenizer, AutoModelForCausalLM #from transformers import pipeline,AutoModelForCausalLM as M,AutoTokenizer as T #m=M.from_pretrained("peterpeter8585/syai4.3") #t=T.from_pretrained("peterpeter8585/syai4.3") #pipe=pipeline(model=m,tokenizer=t,task="text-generation") llm=HuggingFacePipeline.from_model_id(model_id="peterpeter8585/deepseek_1",task="text-generation") from langchain.retrievers import WikipediaRetriever as Wiki import gradio as gr chatbot = gr.Chatbot( label="SYAI4.1", show_copy_button=True, layout="panel" ) def terminal(c): a=Popen(c,shell=True,stdin=P,stdout=P,stderr=P) return a.stdout.read()+a.stderr.read() tools=FMT().get_tools() tools.append(PYT()) tools.append(YTS()) tools.extend(load_tools(["requests_all"],allow_dangerous_tools=True)) tools.extend(load_tools(["llm-math","ddg-search"],llm=llm)) tools.append(Tool.from_function(func=terminal,name="terminal",description="터미널 명령어실행에 적합함")) tools.append(crt(name="wiki",description="위키 백과를 검색하여 정보를 가져온다",retriever=Wiki(lang="ko",top_k_results=1))) def chat(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, chat_session): messages=[SM(content=system_message+"And, Your name is Chatchat")] for val in history: if val[0]: messages.append(HM(content=val[0])) if val[1]: messages.append(AM(content=val[1])) messages.append(HM(content=message)) memory=MEM(memory_key="history") agent=Ex(agent=Agent(llm,tools,prompt),tools=tools,verbose=True,handle_parsing_errors=True,memory=memory) return agent.invoke({"input":messages,"chat_history":memory.buffer_as_messages}) ai1=gr.ChatInterface( chat, chatbot=chatbot, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.1, step=0.05, label="Top-p (nucleus sampling)", ), gr.Textbox(label="chat_id(please enter the chat id!)") ], ) ai1.launch()