Spaces:
Running
Running
File size: 21,619 Bytes
74315dc 999d54c 201eb03 e33102a 89b169e e33102a d900808 e33102a 4513e1b e33102a 74315dc 4513e1b 74315dc d900808 74315dc e33102a 74315dc e33102a 74315dc e33102a 4513e1b e33102a d900808 e33102a 74315dc e33102a 74315dc e33102a 9d078aa e33102a 74315dc e33102a 74315dc e33102a 9d078aa e33102a 9d078aa e33102a 9d078aa e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 e33102a d900808 9d078aa d900808 e33102a 9d078aa e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 9d078aa d900808 9d078aa d900808 e33102a d900808 9d078aa d900808 9d078aa d900808 e33102a d900808 9d078aa d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 9d078aa e33102a d900808 e33102a d900808 e33102a d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 e33102a d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 9d078aa d900808 e33102a d900808 e33102a d900808 15f0220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import streamlit as st
import cv2
import numpy as np
import time
import plotly.graph_objects as go
from transformers import pipeline
from PIL import Image
import torch
from collections import deque
import os
import tempfile
# Set page config
st.set_page_config(
page_title="Emotion Detection",
page_icon="😀",
layout="wide"
)
# --- App Title and Description ---
st.title("Emotion Detection")
st.write("""
This app detects emotions in real-time using webcam, video files, or images.
If your webcam isn't working, try the simulation mode or upload a video file.
""")
# --- Load Models ---
@st.cache_resource(show_spinner=False)
def load_emotion_detector(model_name="dima806/facial_emotions_image_detection"):
"""Load the emotion detection model."""
with st.spinner(f"Loading emotion detection model ({model_name})..."):
classifier = pipeline("image-classification", model=model_name)
return classifier
@st.cache_resource(show_spinner=False)
def load_face_detector():
"""Load the face detector model."""
with st.spinner("Loading face detection model..."):
# Load OpenCV's face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
return face_cascade
# --- Sidebar: Model and Settings ---
st.sidebar.header("Settings")
# Model selection
model_options = {
"Facial Emotions (Default)": "dima806/facial_emotions_image_detection",
"Facial Expressions": "juliensimon/distilbert-emotion"
}
selected_model = st.sidebar.selectbox(
"Choose Emotion Model",
list(model_options.keys())
)
input_method = st.sidebar.radio(
"Choose Input Method",
["Real-time Webcam", "Upload an Image", "Capture Image"]
)
confidence_threshold = st.sidebar.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
use_face_detection = st.sidebar.checkbox("Enable Face Detection", value=True)
if input_method in ["Real-time Webcam", "Upload Video", "Simulation Mode"]:
history_length = st.sidebar.slider(
"Emotion History Length (seconds)",
min_value=5,
max_value=60,
value=10,
step=5
)
# Load the selected model
classifier = load_emotion_detector(model_options[selected_model])
face_detector = load_face_detector()
# --- Utility Functions ---
def detect_faces(image):
"""Detect faces in an image using OpenCV."""
if isinstance(image, Image.Image):
opencv_image = np.array(image)
opencv_image = opencv_image[:, :, ::-1].copy()
else:
opencv_image = image
# Convert to grayscale for face detection
gray = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_detector.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
return faces, opencv_image
def process_image_for_emotion(image, face=None):
"""Process image for emotion detection."""
if isinstance(image, np.ndarray):
# Convert OpenCV image to PIL
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
if face is not None:
# Crop to face region
x, y, w, h = face
image = image.crop((x, y, x+w, y+h))
return image
def predict_emotion(image):
"""Predict emotion from an image."""
try:
results = classifier(image)
return results[0] # Return top prediction
except Exception as e:
st.error(f"Error during emotion prediction: {str(e)}")
return {"label": "Error", "score": 0.0}
def draw_faces_with_emotions(image, faces, emotions):
"""Draw rectangles around faces and label with emotions."""
img = image.copy()
emotion_colors = {
"happy": (0, 255, 0), # Green
"sad": (255, 0, 0), # Blue
"neutral": (255, 255, 0), # Cyan
"angry": (0, 0, 255), # Red
"surprise": (255, 165, 0), # Orange
"fear": (128, 0, 128), # Purple
"disgust": (0, 128, 128) # Brown
}
default_color = (255, 255, 255)
for (x, y, w, h), emotion in zip(faces, emotions):
emotion_key = emotion["label"].lower().split("_")[-1]
color = emotion_colors.get(emotion_key, default_color)
cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)
# Add emotion label and confidence
label = f"{emotion['label']} ({emotion['score']:.2f})"
cv2.putText(img, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return img
def generate_simulated_face(frame_num, canvas_size=(640, 480)):
"""Generate a simulated face with changing expressions."""
# Create a blank canvas
canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 230
# Calculate center position and face size
center_x, center_y = canvas_size[0] // 2, canvas_size[1] // 2
face_radius = min(canvas_size) // 4
# Face movement based on frame number
movement_x = int(np.sin(frame_num * 0.02) * 50)
movement_y = int(np.cos(frame_num * 0.03) * 30)
face_x = center_x + movement_x
face_y = center_y + movement_y
# Draw face circle
cv2.circle(canvas, (face_x, face_y), face_radius, (220, 210, 180), -1)
# Draw eyes
eye_y = face_y - int(face_radius * 0.2)
left_eye_x = face_x - int(face_radius * 0.5)
right_eye_x = face_x + int(face_radius * 0.5)
eye_size = max(5, face_radius // 8)
# Blink occasionally
if frame_num % 50 > 45:
cv2.ellipse(canvas, (left_eye_x, eye_y), (eye_size, 1), 0, 0, 360, (30, 30, 30), -1)
cv2.ellipse(canvas, (right_eye_x, eye_y), (eye_size, 1), 0, 0, 360, (30, 30, 30), -1)
else:
cv2.circle(canvas, (left_eye_x, eye_y), eye_size, (255, 255, 255), -1)
cv2.circle(canvas, (right_eye_x, eye_y), eye_size, (255, 255, 255), -1)
cv2.circle(canvas, (left_eye_x, eye_y), eye_size-2, (70, 70, 70), -1)
cv2.circle(canvas, (right_eye_x, eye_y), eye_size-2, (70, 70, 70), -1)
mouth_y = face_y + int(face_radius * 0.3)
mouth_width = int(face_radius * 0.6)
mouth_height = int(face_radius * 0.2)
emotion_cycle = (frame_num // 100) % 4
if emotion_cycle == 0: # Happy
# Smile
cv2.ellipse(canvas, (face_x, mouth_y), (mouth_width, mouth_height),
0, 0, 180, (50, 50, 50), 2)
elif emotion_cycle == 1: # Sad
# Frown
cv2.ellipse(canvas, (face_x, mouth_y + mouth_height),
(mouth_width, mouth_height), 0, 180, 360, (50, 50, 50), 2)
elif emotion_cycle == 2: # Surprised
# O mouth
cv2.circle(canvas, (face_x, mouth_y), mouth_height, (50, 50, 50), 2)
else: # Neutral
# Straight line
cv2.line(canvas, (face_x - mouth_width//2, mouth_y),
(face_x + mouth_width//2, mouth_y), (50, 50, 50), 2)
emotions = ["Happy", "Sad", "Surprised", "Neutral"]
cv2.putText(canvas, f"Simulating: {emotions[emotion_cycle]}",
(20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (50, 50, 50), 2)
cv2.putText(canvas, "Simulation Mode - No webcam required",
(20, canvas_size[1] - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (100, 100, 100), 1)
return canvas
def process_video_feed(feed_source, is_simulation=False):
"""Process video feed (webcam, video file, or simulation)."""
video_placeholder = st.empty()
metrics_placeholder = st.empty()
chart_placeholder = st.empty()
if 'emotion_history' not in st.session_state:
st.session_state.emotion_history = {}
st.session_state.last_update_time = time.time()
st.session_state.frame_count = 0
st.session_state.simulation_frame = 0
# Start/Stop button
start_button = st.button("Start" if 'running' not in st.session_state or not st.session_state.running else "Stop")
if start_button:
st.session_state.running = not st.session_state.get('running', False)
# If running, capture and process video feed
if st.session_state.get('running', False):
try:
# Initialize video source
if is_simulation:
# No need to open a video source for simulation
pass
else:
cap = feed_source
# Check if video source opened successfully
if not cap.isOpened():
st.error("Could not open video source. Please check your settings.")
st.session_state.running = False
return
# Create deques for tracking emotions
emotion_deques = {}
timestamp_deque = deque(maxlen=30*history_length)
while st.session_state.get('running', False):
# Get frame
if is_simulation:
frame = generate_simulated_face(st.session_state.simulation_frame)
st.session_state.simulation_frame += 1
ret = True
else:
# Read from video source
ret, frame = cap.read()
if not ret:
if is_simulation:
st.error("Simulation error")
elif input_method == "Upload Video":
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
continue
else:
st.error("Failed to capture frame from video source")
break
if input_method == "Real-time Webcam" and not is_simulation:
frame = cv2.flip(frame, 1)
st.session_state.frame_count += 1
# Detect faces
if use_face_detection:
faces, _ = detect_faces(frame)
if len(faces) > 0:
# Process each face
emotions = []
for face in faces:
face_img = process_image_for_emotion(frame, face)
emotions.append(predict_emotion(face_img))
# Draw faces with emotions
frame = draw_faces_with_emotions(frame, faces, emotions)
# Update emotion history
current_time = time.time()
timestamp_deque.append(current_time)
for i, emotion in enumerate(emotions):
if emotion["score"] >= confidence_threshold:
face_id = f"Face {i+1}"
if face_id not in emotion_deques:
emotion_deques[face_id] = deque(maxlen=30*history_length)
emotion_deques[face_id].append({
"emotion": emotion["label"],
"confidence": emotion["score"],
"time": current_time
})
else:
# No faces detected
pass
else:
# Process the whole frame
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
emotion = predict_emotion(pil_image)
# Display emotion on frame
cv2.putText(
frame,
f"{emotion['label']} ({emotion['score']:.2f})",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2
)
current_time = time.time()
timestamp_deque.append(current_time)
if "Frame" not in emotion_deques:
emotion_deques["Frame"] = deque(maxlen=30*history_length)
emotion_deques["Frame"].append({
"emotion": emotion["label"],
"confidence": emotion["score"],
"time": current_time
})
current_time = time.time()
time_diff = current_time - st.session_state.last_update_time
if time_diff >= 1.0:
fps = st.session_state.frame_count / time_diff
st.session_state.last_update_time = current_time
st.session_state.frame_count = 0
with metrics_placeholder.container():
cols = st.columns(3)
cols[0].metric("FPS", f"{fps:.1f}")
cols[1].metric("Faces Detected", len(faces) if use_face_detection else "N/A")
video_placeholder.image(frame, channels="BGR", use_column_width=True)
if len(timestamp_deque) > 0 and time_diff >= 0.5:
with chart_placeholder.container():
if len(emotion_deques) > 0:
tabs = st.tabs(list(emotion_deques.keys()))
for i, (face_id, emotion_data) in enumerate(emotion_deques.items()):
with tabs[i]:
if len(emotion_data) > 0:
emotion_counts = {}
for entry in emotion_data:
emotion = entry["emotion"]
if emotion not in emotion_counts:
emotion_counts[emotion] = 0
emotion_counts[emotion] += 1
fig = go.Figure(data=[go.Pie(
labels=list(emotion_counts.keys()),
values=list(emotion_counts.values()),
hole=.3
)])
fig.update_layout(title=f"Emotion Distribution - {face_id}")
st.plotly_chart(fig, use_container_width=True)
emotions = list(emotion_data)[-20:]
times = [(e["time"] - emotions[0]["time"]) for e in emotions]
confidences = [e["confidence"] for e in emotions]
emotion_labels = [e["emotion"] for e in emotions]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=times,
y=confidences,
mode='lines+markers',
text=emotion_labels,
hoverinfo='text+y'
))
fig.update_layout(
title=f"Emotion Confidence Over Time - {face_id}",
xaxis_title="Time (seconds)",
yaxis_title="Confidence",
yaxis=dict(range=[0, 1])
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info(f"No emotion data available for {face_id} yet.")
else:
st.info("No emotion data available yet.")
if input_method in ["Upload Video", "Simulation Mode"]:
time.sleep(0.03 / processing_speed)
if not is_simulation and cap.isOpened():
cap.release()
except Exception as e:
st.error(f"Error during processing: {str(e)}")
st.session_state.running = False
else:
placeholder_img = np.zeros((300, 500, 3), dtype=np.uint8)
cv2.putText(
placeholder_img,
"Click 'Start' to begin",
(80, 150),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2
)
video_placeholder.image(placeholder_img, channels="BGR", use_column_width=True)
# --- Process uploaded image ---
def process_static_image(image):
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Image", use_column_width=True)
# Process image
if use_face_detection:
faces, opencv_image = detect_faces(image)
if len(faces) > 0:
emotions = []
for face in faces:
face_img = process_image_for_emotion(image, face)
emotions.append(predict_emotion(face_img))
# Draw faces with emotions
result_image = draw_faces_with_emotions(opencv_image, faces, emotions)
with col2:
st.image(result_image, caption="Detected Emotions", channels="BGR", use_column_width=True)
st.subheader("Detected Emotions:")
for i, (emotion, face) in enumerate(zip(emotions, faces)):
if emotion["score"] >= confidence_threshold:
st.write(f"Face {i+1}: **{emotion['label']}** (Confidence: {emotion['score']:.2f})")
# Show confidence bars
top_emotions = classifier(process_image_for_emotion(image, face))
labels = [item["label"] for item in top_emotions]
scores = [item["score"] for item in top_emotions]
fig = go.Figure(go.Bar(
x=scores,
y=labels,
orientation='h'
))
fig.update_layout(
title=f"Emotion Confidence - Face {i+1}",
xaxis_title="Confidence",
yaxis_title="Emotion",
height=300
)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("No faces detected in the image. Try another image or disable face detection.")
else:
prediction = predict_emotion(image)
st.subheader("Prediction:")
st.write(f"**Emotion:** {prediction['label']}")
st.write(f"**Confidence:** {prediction['score']:.2f}")
# --- Main App Logic ---
if input_method == "Upload an Image":
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert("RGB")
process_static_image(image)
elif input_method == "Capture Image":
picture = st.camera_input("Capture an Image")
if picture is not None:
image = Image.open(picture).convert("RGB")
process_static_image(image)
elif input_method == "Upload Video":
uploaded_video = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov", "mkv"])
if uploaded_video is not None:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_video.read())
cap = cv2.VideoCapture(tfile.name)
process_video_feed(cap)
os.unlink(tfile.name)
elif input_method == "Simulation Mode":
st.info("Simulation mode uses a generated animated face. No webcam required!")
process_video_feed(None, is_simulation=True)
elif input_method == "Real-time Webcam":
try:
# First check if we can access the webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
st.error("Could not open webcam. Please try the Simulation Mode instead.")
st.info("If you're using Streamlit in a browser, make sure you've granted camera permissions.")
else:
# Webcam available, process it
process_video_feed(cap)
except Exception as e:
st.error(f"Error accessing webcam: {str(e)}")
st.info("Please try the Simulation Mode instead, which doesn't require webcam access.")
|