Spaces:
Running
Running
updating prj
Browse files- app.py +62 -47
- requirements.txt +3 -4
app.py
CHANGED
@@ -1,49 +1,64 @@
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
-
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
import cv2
|
|
|
5 |
import numpy as np
|
6 |
+
|
7 |
+
# --- App Title and Description ---
|
8 |
+
st.title("Real-Time Emotion Detection App")
|
9 |
+
st.write("""
|
10 |
+
This app uses a lightweight, pre-trained emotion detection model from Hugging Face to predict emotions
|
11 |
+
from faces in an image. You can either upload an image or use your webcam to capture an image.
|
12 |
+
""")
|
13 |
+
|
14 |
+
# --- Load the Emotion Detection Model ---
|
15 |
+
# Cache the model loading so it isn’t reloaded on every app interaction.
|
16 |
+
@st.cache_resource(show_spinner=False)
|
17 |
+
def load_emotion_detector():
|
18 |
+
# Loads the Hugging Face image-classification pipeline with the specified model.
|
19 |
+
classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
|
20 |
+
return classifier
|
21 |
+
|
22 |
+
classifier = load_emotion_detector()
|
23 |
+
|
24 |
+
# --- Sidebar: Select Input Method ---
|
25 |
+
st.sidebar.header("Select Input Method")
|
26 |
+
input_method = st.sidebar.radio("Choose one:", ["Upload an Image", "Capture with Webcam"])
|
27 |
+
|
28 |
+
# --- Process Image and Perform Inference ---
|
29 |
+
def predict_emotion(image: Image.Image):
|
30 |
+
# Optionally, you can perform additional preprocessing (e.g., face detection or cropping) here.
|
31 |
+
results = classifier(image)
|
32 |
+
# The pipeline returns a list of dictionaries sorted by score.
|
33 |
+
top_prediction = results[0]
|
34 |
+
return top_prediction
|
35 |
+
|
36 |
+
# --- Main Section: Handling Input Methods ---
|
37 |
+
|
38 |
+
if input_method == "Upload an Image":
|
39 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
40 |
+
if uploaded_file is not None:
|
41 |
+
# Open the image file with PIL.
|
42 |
+
image = Image.open(uploaded_file).convert("RGB")
|
43 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
44 |
+
prediction = predict_emotion(image)
|
45 |
+
st.subheader("Prediction:")
|
46 |
+
st.write(f"**Emotion:** {prediction['label']}")
|
47 |
+
st.write(f"**Confidence:** {prediction['score']:.2f}")
|
48 |
+
|
49 |
+
elif input_method == "Capture with Webcam":
|
50 |
+
# st.camera_input returns an image file-like object when a picture is taken.
|
51 |
+
picture = st.camera_input("Capture an Image")
|
52 |
+
if picture is not None:
|
53 |
+
# Load image from the captured file.
|
54 |
+
image = Image.open(picture).convert("RGB")
|
55 |
+
st.image(image, caption="Captured Image", use_column_width=True)
|
56 |
+
prediction = predict_emotion(image)
|
57 |
+
st.subheader("Prediction:")
|
58 |
+
st.write(f"**Emotion:** {prediction['label']}")
|
59 |
+
st.write(f"**Confidence:** {prediction['score']:.2f}")
|
60 |
+
|
61 |
+
# --- Optional: Additional Instructions ---
|
62 |
+
st.write("""
|
63 |
+
*Note: For best results in real-time detection, consider focusing the camera on your face or uploading a clear face image.*
|
64 |
+
""")
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
|
|
|
|
|
2 |
opencv-python
|
3 |
-
fer
|
4 |
-
numpy
|
5 |
-
moviepy
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
pillow
|
4 |
opencv-python
|
|
|
|
|
|