Spaces:
Running
Running
updating app
Browse files- app.py +452 -40
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,65 +1,477 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
from PIL import Image
|
4 |
import cv2
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# --- App Title and Description ---
|
9 |
-
st.title("Real-Time Emotion Detection
|
10 |
st.write("""
|
11 |
-
This app
|
12 |
-
|
13 |
""")
|
14 |
|
15 |
-
# --- Load
|
16 |
-
# Cache the model loading so it isn’t reloaded on every app interaction.
|
17 |
@st.cache_resource(show_spinner=False)
|
18 |
-
def load_emotion_detector():
|
19 |
-
|
20 |
-
|
|
|
21 |
return classifier
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
# ---
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
if input_method == "Upload an Image":
|
40 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
41 |
if uploaded_file is not None:
|
42 |
-
#
|
43 |
image = Image.open(uploaded_file).convert("RGB")
|
44 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
45 |
-
prediction = predict_emotion(image)
|
46 |
-
st.subheader("Prediction:")
|
47 |
-
st.write(f"**Emotion:** {prediction['label']}")
|
48 |
-
st.write(f"**Confidence:** {prediction['score']:.2f}")
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
picture = st.camera_input("Capture an Image")
|
|
|
53 |
if picture is not None:
|
54 |
-
# Load image from the captured file.
|
55 |
image = Image.open(picture).convert("RGB")
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
st.
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import time
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from transformers import pipeline
|
7 |
+
from PIL import Image
|
8 |
import torch
|
9 |
+
from collections import deque
|
10 |
+
|
11 |
+
# Set page config
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Real-Time Emotion Detection",
|
14 |
+
page_icon="😀",
|
15 |
+
layout="wide"
|
16 |
+
)
|
17 |
|
18 |
# --- App Title and Description ---
|
19 |
+
st.title("Advanced Real-Time Emotion Detection")
|
20 |
st.write("""
|
21 |
+
This app detects emotions in real-time using your webcam. It tracks facial expressions continuously
|
22 |
+
and provides visual feedback on detected emotions.
|
23 |
""")
|
24 |
|
25 |
+
# --- Load Models ---
|
|
|
26 |
@st.cache_resource(show_spinner=False)
|
27 |
+
def load_emotion_detector(model_name="dima806/facial_emotions_image_detection"):
|
28 |
+
"""Load the emotion detection model."""
|
29 |
+
with st.spinner(f"Loading emotion detection model ({model_name})..."):
|
30 |
+
classifier = pipeline("image-classification", model=model_name)
|
31 |
return classifier
|
32 |
|
33 |
+
@st.cache_resource(show_spinner=False)
|
34 |
+
def load_face_detector():
|
35 |
+
"""Load the face detector model."""
|
36 |
+
with st.spinner("Loading face detection model..."):
|
37 |
+
# Load OpenCV's face detector
|
38 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
39 |
+
return face_cascade
|
40 |
+
|
41 |
+
# --- Sidebar: Model and Settings ---
|
42 |
+
st.sidebar.header("Settings")
|
43 |
+
|
44 |
+
# Model selection
|
45 |
+
model_options = {
|
46 |
+
"Facial Emotions (Default)": "dima806/facial_emotions_image_detection",
|
47 |
+
"Facial Expressions": "juliensimon/distilbert-emotion"
|
48 |
+
}
|
49 |
+
selected_model = st.sidebar.selectbox(
|
50 |
+
"Choose Emotion Model",
|
51 |
+
list(model_options.keys())
|
52 |
+
)
|
53 |
+
|
54 |
+
# Input method selection
|
55 |
+
input_method = st.sidebar.radio(
|
56 |
+
"Choose Input Method",
|
57 |
+
["Real-time Webcam", "Upload an Image", "Capture Image"]
|
58 |
+
)
|
59 |
+
|
60 |
+
# Confidence threshold
|
61 |
+
confidence_threshold = st.sidebar.slider(
|
62 |
+
"Confidence Threshold",
|
63 |
+
min_value=0.0,
|
64 |
+
max_value=1.0,
|
65 |
+
value=0.5,
|
66 |
+
step=0.05
|
67 |
+
)
|
68 |
+
|
69 |
+
# Face detection toggle
|
70 |
+
use_face_detection = st.sidebar.checkbox("Enable Face Detection", value=True)
|
71 |
+
|
72 |
+
# History length for real-time tracking
|
73 |
+
if input_method == "Real-time Webcam":
|
74 |
+
history_length = st.sidebar.slider(
|
75 |
+
"Emotion History Length (seconds)",
|
76 |
+
min_value=5,
|
77 |
+
max_value=60,
|
78 |
+
value=10,
|
79 |
+
step=5
|
80 |
+
)
|
81 |
|
82 |
+
# Load the selected model
|
83 |
+
classifier = load_emotion_detector(model_options[selected_model])
|
84 |
+
face_detector = load_face_detector()
|
85 |
|
86 |
+
# --- Utility Functions ---
|
87 |
+
def detect_faces(image):
|
88 |
+
"""Detect faces in an image using OpenCV."""
|
89 |
+
# Convert PIL Image to OpenCV format
|
90 |
+
if isinstance(image, Image.Image):
|
91 |
+
opencv_image = np.array(image)
|
92 |
+
opencv_image = opencv_image[:, :, ::-1].copy() # Convert RGB to BGR
|
93 |
+
else:
|
94 |
+
opencv_image = image
|
95 |
+
|
96 |
+
# Convert to grayscale for face detection
|
97 |
+
gray = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2GRAY)
|
98 |
+
|
99 |
+
# Detect faces
|
100 |
+
faces = face_detector.detectMultiScale(
|
101 |
+
gray,
|
102 |
+
scaleFactor=1.1,
|
103 |
+
minNeighbors=5,
|
104 |
+
minSize=(30, 30)
|
105 |
+
)
|
106 |
+
|
107 |
+
return faces, opencv_image
|
108 |
|
109 |
+
def process_image_for_emotion(image, face=None):
|
110 |
+
"""Process image for emotion detection."""
|
111 |
+
if isinstance(image, np.ndarray):
|
112 |
+
# Convert OpenCV image to PIL
|
113 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
114 |
+
image = Image.fromarray(image)
|
115 |
+
|
116 |
+
if face is not None:
|
117 |
+
# Crop to face region
|
118 |
+
x, y, w, h = face
|
119 |
+
image = image.crop((x, y, x+w, y+h))
|
120 |
+
|
121 |
+
return image
|
122 |
|
123 |
+
def predict_emotion(image):
|
124 |
+
"""Predict emotion from an image."""
|
125 |
+
try:
|
126 |
+
results = classifier(image)
|
127 |
+
return results[0] # Return top prediction
|
128 |
+
except Exception as e:
|
129 |
+
st.error(f"Error during emotion prediction: {str(e)}")
|
130 |
+
return {"label": "Error", "score": 0.0}
|
131 |
+
|
132 |
+
def draw_faces_with_emotions(image, faces, emotions):
|
133 |
+
"""Draw rectangles around faces and label with emotions."""
|
134 |
+
img = image.copy()
|
135 |
+
|
136 |
+
# Define colors for different emotions (BGR format)
|
137 |
+
emotion_colors = {
|
138 |
+
"happy": (0, 255, 0), # Green
|
139 |
+
"sad": (255, 0, 0), # Blue
|
140 |
+
"neutral": (255, 255, 0), # Cyan
|
141 |
+
"angry": (0, 0, 255), # Red
|
142 |
+
"surprise": (255, 165, 0), # Orange
|
143 |
+
"fear": (128, 0, 128), # Purple
|
144 |
+
"disgust": (0, 128, 128) # Brown
|
145 |
+
}
|
146 |
+
|
147 |
+
# Default color for unknown emotions
|
148 |
+
default_color = (255, 255, 255) # White
|
149 |
+
|
150 |
+
for (x, y, w, h), emotion in zip(faces, emotions):
|
151 |
+
# Get color based on emotion (lowercase and remove any prefix)
|
152 |
+
emotion_key = emotion["label"].lower().split("_")[-1]
|
153 |
+
color = emotion_colors.get(emotion_key, default_color)
|
154 |
+
|
155 |
+
# Draw rectangle around face
|
156 |
+
cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)
|
157 |
+
|
158 |
+
# Add emotion label and confidence
|
159 |
+
label = f"{emotion['label']} ({emotion['score']:.2f})"
|
160 |
+
cv2.putText(img, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
161 |
+
|
162 |
+
return img
|
163 |
+
|
164 |
+
# --- Main App Logic ---
|
165 |
if input_method == "Upload an Image":
|
166 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
167 |
+
|
168 |
if uploaded_file is not None:
|
169 |
+
# Load and display image
|
170 |
image = Image.open(uploaded_file).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
col1, col2 = st.columns(2)
|
173 |
+
with col1:
|
174 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
175 |
+
|
176 |
+
# Process image
|
177 |
+
if use_face_detection:
|
178 |
+
faces, opencv_image = detect_faces(image)
|
179 |
+
|
180 |
+
if len(faces) > 0:
|
181 |
+
emotions = []
|
182 |
+
for face in faces:
|
183 |
+
face_img = process_image_for_emotion(image, face)
|
184 |
+
emotions.append(predict_emotion(face_img))
|
185 |
+
|
186 |
+
# Draw faces with emotions
|
187 |
+
result_image = draw_faces_with_emotions(opencv_image, faces, emotions)
|
188 |
+
|
189 |
+
with col2:
|
190 |
+
st.image(result_image, caption="Detected Emotions", channels="BGR", use_column_width=True)
|
191 |
+
|
192 |
+
# Display predictions
|
193 |
+
st.subheader("Detected Emotions:")
|
194 |
+
for i, (emotion, face) in enumerate(zip(emotions, faces)):
|
195 |
+
if emotion["score"] >= confidence_threshold:
|
196 |
+
st.write(f"Face {i+1}: **{emotion['label']}** (Confidence: {emotion['score']:.2f})")
|
197 |
+
|
198 |
+
# Show confidence bars
|
199 |
+
top_emotions = classifier(process_image_for_emotion(image, face))
|
200 |
+
labels = [item["label"] for item in top_emotions]
|
201 |
+
scores = [item["score"] for item in top_emotions]
|
202 |
+
|
203 |
+
fig = go.Figure(go.Bar(
|
204 |
+
x=scores,
|
205 |
+
y=labels,
|
206 |
+
orientation='h'
|
207 |
+
))
|
208 |
+
fig.update_layout(
|
209 |
+
title=f"Emotion Confidence - Face {i+1}",
|
210 |
+
xaxis_title="Confidence",
|
211 |
+
yaxis_title="Emotion",
|
212 |
+
height=300
|
213 |
+
)
|
214 |
+
st.plotly_chart(fig, use_container_width=True)
|
215 |
+
else:
|
216 |
+
st.warning("No faces detected in the image. Try another image or disable face detection.")
|
217 |
+
else:
|
218 |
+
# Process the whole image
|
219 |
+
prediction = predict_emotion(image)
|
220 |
+
st.subheader("Prediction:")
|
221 |
+
st.write(f"**Emotion:** {prediction['label']}")
|
222 |
+
st.write(f"**Confidence:** {prediction['score']:.2f}")
|
223 |
+
|
224 |
+
elif input_method == "Capture Image":
|
225 |
picture = st.camera_input("Capture an Image")
|
226 |
+
|
227 |
if picture is not None:
|
|
|
228 |
image = Image.open(picture).convert("RGB")
|
229 |
+
|
230 |
+
col1, col2 = st.columns(2)
|
231 |
+
with col1:
|
232 |
+
st.image(image, caption="Captured Image", use_column_width=True)
|
233 |
+
|
234 |
+
# Process image
|
235 |
+
if use_face_detection:
|
236 |
+
faces, opencv_image = detect_faces(image)
|
237 |
+
|
238 |
+
if len(faces) > 0:
|
239 |
+
emotions = []
|
240 |
+
for face in faces:
|
241 |
+
face_img = process_image_for_emotion(image, face)
|
242 |
+
emotions.append(predict_emotion(face_img))
|
243 |
+
|
244 |
+
# Draw faces with emotions
|
245 |
+
result_image = draw_faces_with_emotions(opencv_image, faces, emotions)
|
246 |
+
|
247 |
+
with col2:
|
248 |
+
st.image(result_image, caption="Detected Emotions", channels="BGR", use_column_width=True)
|
249 |
+
|
250 |
+
# Display predictions
|
251 |
+
st.subheader("Detected Emotions:")
|
252 |
+
for i, (emotion, face) in enumerate(zip(emotions, faces)):
|
253 |
+
if emotion["score"] >= confidence_threshold:
|
254 |
+
st.write(f"Face {i+1}: **{emotion['label']}** (Confidence: {emotion['score']:.2f})")
|
255 |
+
else:
|
256 |
+
st.warning("No faces detected in the image. Try another image or disable face detection.")
|
257 |
+
else:
|
258 |
+
# Process the whole image
|
259 |
+
prediction = predict_emotion(image)
|
260 |
+
st.subheader("Prediction:")
|
261 |
+
st.write(f"**Emotion:** {prediction['label']}")
|
262 |
+
st.write(f"**Confidence:** {prediction['score']:.2f}")
|
263 |
|
264 |
+
elif input_method == "Real-time Webcam":
|
265 |
+
st.subheader("Real-time Emotion Detection")
|
266 |
+
st.write("Click 'Start' to begin real-time emotion detection using your webcam.")
|
267 |
+
|
268 |
+
# Create a placeholder for the webcam feed
|
269 |
+
video_placeholder = st.empty()
|
270 |
+
|
271 |
+
# Create a placeholder for metrics
|
272 |
+
metrics_placeholder = st.empty()
|
273 |
+
|
274 |
+
# Create a placeholder for emotion history chart
|
275 |
+
chart_placeholder = st.empty()
|
276 |
+
|
277 |
+
# Initialize session state for tracking emotions over time
|
278 |
+
if 'emotion_history' not in st.session_state:
|
279 |
+
st.session_state.emotion_history = {}
|
280 |
+
st.session_state.last_update_time = time.time()
|
281 |
+
st.session_state.frame_count = 0
|
282 |
+
|
283 |
+
# Start/Stop button
|
284 |
+
start_button = st.button("Start" if 'running' not in st.session_state or not st.session_state.running else "Stop")
|
285 |
+
|
286 |
+
if start_button:
|
287 |
+
st.session_state.running = not st.session_state.get('running', False)
|
288 |
+
|
289 |
+
# If running, capture and process webcam feed
|
290 |
+
if st.session_state.get('running', False):
|
291 |
+
try:
|
292 |
+
# Open the webcam
|
293 |
+
cap = cv2.VideoCapture(0)
|
294 |
+
|
295 |
+
# Check if webcam opened successfully
|
296 |
+
if not cap.isOpened():
|
297 |
+
st.error("Could not open webcam. Please check your camera settings.")
|
298 |
+
st.session_state.running = False
|
299 |
+
else:
|
300 |
+
# Create deques for tracking emotions
|
301 |
+
emotion_deques = {}
|
302 |
+
timestamp_deque = deque(maxlen=30*history_length) # Store timestamps for X seconds at 30fps
|
303 |
+
|
304 |
+
while st.session_state.get('running', False):
|
305 |
+
# Read frame
|
306 |
+
ret, frame = cap.read()
|
307 |
+
|
308 |
+
if not ret:
|
309 |
+
st.error("Failed to capture frame from webcam")
|
310 |
+
break
|
311 |
+
|
312 |
+
# Flip the frame horizontally for a more natural view
|
313 |
+
frame = cv2.flip(frame, 1)
|
314 |
+
|
315 |
+
# Increment frame count for FPS calculation
|
316 |
+
st.session_state.frame_count += 1
|
317 |
+
|
318 |
+
# Detect faces
|
319 |
+
if use_face_detection:
|
320 |
+
faces, _ = detect_faces(frame)
|
321 |
+
|
322 |
+
if len(faces) > 0:
|
323 |
+
# Process each face
|
324 |
+
emotions = []
|
325 |
+
for face in faces:
|
326 |
+
face_img = process_image_for_emotion(frame, face)
|
327 |
+
emotions.append(predict_emotion(face_img))
|
328 |
+
|
329 |
+
# Draw faces with emotions
|
330 |
+
frame = draw_faces_with_emotions(frame, faces, emotions)
|
331 |
+
|
332 |
+
# Update emotion history
|
333 |
+
current_time = time.time()
|
334 |
+
timestamp_deque.append(current_time)
|
335 |
+
|
336 |
+
for i, emotion in enumerate(emotions):
|
337 |
+
if emotion["score"] >= confidence_threshold:
|
338 |
+
face_id = f"Face {i+1}"
|
339 |
+
if face_id not in emotion_deques:
|
340 |
+
emotion_deques[face_id] = deque(maxlen=30*history_length)
|
341 |
+
|
342 |
+
emotion_deques[face_id].append({
|
343 |
+
"emotion": emotion["label"],
|
344 |
+
"confidence": emotion["score"],
|
345 |
+
"time": current_time
|
346 |
+
})
|
347 |
+
else:
|
348 |
+
# No faces detected
|
349 |
+
pass
|
350 |
+
else:
|
351 |
+
# Process the whole frame
|
352 |
+
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
353 |
+
emotion = predict_emotion(pil_image)
|
354 |
+
|
355 |
+
# Display emotion on frame
|
356 |
+
cv2.putText(
|
357 |
+
frame,
|
358 |
+
f"{emotion['label']} ({emotion['score']:.2f})",
|
359 |
+
(10, 30),
|
360 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
361 |
+
1,
|
362 |
+
(0, 255, 0),
|
363 |
+
2
|
364 |
+
)
|
365 |
+
|
366 |
+
# Update emotion history
|
367 |
+
current_time = time.time()
|
368 |
+
timestamp_deque.append(current_time)
|
369 |
+
|
370 |
+
if "Frame" not in emotion_deques:
|
371 |
+
emotion_deques["Frame"] = deque(maxlen=30*history_length)
|
372 |
+
|
373 |
+
emotion_deques["Frame"].append({
|
374 |
+
"emotion": emotion["label"],
|
375 |
+
"confidence": emotion["score"],
|
376 |
+
"time": current_time
|
377 |
+
})
|
378 |
+
|
379 |
+
# Calculate FPS
|
380 |
+
current_time = time.time()
|
381 |
+
time_diff = current_time - st.session_state.last_update_time
|
382 |
+
if time_diff >= 1.0: # Update every second
|
383 |
+
fps = st.session_state.frame_count / time_diff
|
384 |
+
st.session_state.last_update_time = current_time
|
385 |
+
st.session_state.frame_count = 0
|
386 |
+
|
387 |
+
# Update metrics
|
388 |
+
with metrics_placeholder.container():
|
389 |
+
cols = st.columns(3)
|
390 |
+
cols[0].metric("FPS", f"{fps:.1f}")
|
391 |
+
cols[1].metric("Faces Detected", len(faces) if use_face_detection else "N/A")
|
392 |
+
|
393 |
+
# Display the frame
|
394 |
+
video_placeholder.image(frame, channels="BGR", use_column_width=True)
|
395 |
+
|
396 |
+
# Update emotion history chart periodically
|
397 |
+
if len(timestamp_deque) > 0 and time_diff >= 0.5: # Update chart every 0.5 seconds
|
398 |
+
with chart_placeholder.container():
|
399 |
+
# Create tabs for each face
|
400 |
+
if len(emotion_deques) > 0:
|
401 |
+
tabs = st.tabs(list(emotion_deques.keys()))
|
402 |
+
|
403 |
+
for i, (face_id, emotion_data) in enumerate(emotion_deques.items()):
|
404 |
+
with tabs[i]:
|
405 |
+
if len(emotion_data) > 0:
|
406 |
+
# Count occurrences of each emotion
|
407 |
+
emotion_counts = {}
|
408 |
+
for entry in emotion_data:
|
409 |
+
emotion = entry["emotion"]
|
410 |
+
if emotion not in emotion_counts:
|
411 |
+
emotion_counts[emotion] = 0
|
412 |
+
emotion_counts[emotion] += 1
|
413 |
+
|
414 |
+
# Create pie chart for emotion distribution
|
415 |
+
fig = go.Figure(data=[go.Pie(
|
416 |
+
labels=list(emotion_counts.keys()),
|
417 |
+
values=list(emotion_counts.values()),
|
418 |
+
hole=.3
|
419 |
+
)])
|
420 |
+
fig.update_layout(title=f"Emotion Distribution - {face_id}")
|
421 |
+
st.plotly_chart(fig, use_container_width=True)
|
422 |
+
|
423 |
+
# Create line chart for emotion confidence over time
|
424 |
+
emotions = list(emotion_data)[-20:] # Get the last 20 entries
|
425 |
+
times = [(e["time"] - emotions[0]["time"]) for e in emotions]
|
426 |
+
confidences = [e["confidence"] for e in emotions]
|
427 |
+
emotion_labels = [e["emotion"] for e in emotions]
|
428 |
+
|
429 |
+
fig = go.Figure()
|
430 |
+
fig.add_trace(go.Scatter(
|
431 |
+
x=times,
|
432 |
+
y=confidences,
|
433 |
+
mode='lines+markers',
|
434 |
+
text=emotion_labels,
|
435 |
+
hoverinfo='text+y'
|
436 |
+
))
|
437 |
+
fig.update_layout(
|
438 |
+
title=f"Emotion Confidence Over Time - {face_id}",
|
439 |
+
xaxis_title="Time (seconds)",
|
440 |
+
yaxis_title="Confidence",
|
441 |
+
yaxis=dict(range=[0, 1])
|
442 |
+
)
|
443 |
+
st.plotly_chart(fig, use_container_width=True)
|
444 |
+
else:
|
445 |
+
st.info(f"No emotion data available for {face_id} yet.")
|
446 |
+
else:
|
447 |
+
st.info("No emotion data available yet.")
|
448 |
+
|
449 |
+
# Release the webcam when done
|
450 |
+
cap.release()
|
451 |
+
|
452 |
+
except Exception as e:
|
453 |
+
st.error(f"Error during webcam processing: {str(e)}")
|
454 |
+
st.session_state.running = False
|
455 |
+
else:
|
456 |
+
# Display a placeholder image when not running
|
457 |
+
placeholder_img = np.zeros((300, 500, 3), dtype=np.uint8)
|
458 |
+
cv2.putText(
|
459 |
+
placeholder_img,
|
460 |
+
"Click 'Start' to begin",
|
461 |
+
(80, 150),
|
462 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
463 |
+
1,
|
464 |
+
(255, 255, 255),
|
465 |
+
2
|
466 |
+
)
|
467 |
+
video_placeholder.image(placeholder_img, channels="BGR", use_column_width=True)
|
468 |
+
|
469 |
+
# --- Footer ---
|
470 |
+
st.markdown("---")
|
471 |
+
st.markdown("""
|
472 |
+
**Tips for Best Results:**
|
473 |
+
- Ensure good lighting for accurate face detection
|
474 |
+
- Position your face clearly in the frame
|
475 |
+
- Try different emotion models for comparison
|
476 |
+
- Adjust the confidence threshold if emotions aren't being detected
|
477 |
+
""")
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ streamlit
|
|
2 |
transformers
|
3 |
pillow
|
4 |
opencv-python
|
5 |
-
torch
|
|
|
|
2 |
transformers
|
3 |
pillow
|
4 |
opencv-python
|
5 |
+
torch
|
6 |
+
plotly
|