Spaces:
Running
Running
File size: 24,785 Bytes
74315dc 999d54c 201eb03 e33102a 89b169e e33102a d900808 e33102a 74315dc e33102a 74315dc d900808 74315dc e33102a 74315dc e33102a 74315dc e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a 74315dc e33102a 74315dc e33102a 74315dc e33102a 74315dc e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a d900808 e33102a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
import streamlit as st
import cv2
import numpy as np
import time
import plotly.graph_objects as go
from transformers import pipeline
from PIL import Image
import torch
from collections import deque
import os
import tempfile
# Set page config
st.set_page_config(
page_title="Real-Time Emotion Detection",
page_icon="😀",
layout="wide"
)
# --- App Title and Description ---
st.title("Advanced Real-Time Emotion Detection")
st.write("""
This app detects emotions in real-time using webcam, video files, or images.
If your webcam isn't working, try the simulation mode or upload a video file.
""")
# --- Load Models ---
@st.cache_resource(show_spinner=False)
def load_emotion_detector(model_name="dima806/facial_emotions_image_detection"):
"""Load the emotion detection model."""
with st.spinner(f"Loading emotion detection model ({model_name})..."):
classifier = pipeline("image-classification", model=model_name)
return classifier
@st.cache_resource(show_spinner=False)
def load_face_detector():
"""Load the face detector model."""
with st.spinner("Loading face detection model..."):
# Load OpenCV's face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
return face_cascade
# --- Sidebar: Model and Settings ---
st.sidebar.header("Settings")
# Model selection
model_options = {
"Facial Emotions (Default)": "dima806/facial_emotions_image_detection",
"Facial Expressions": "juliensimon/distilbert-emotion"
}
selected_model = st.sidebar.selectbox(
"Choose Emotion Model",
list(model_options.keys())
)
# Input method selection with addition of video upload and simulation
input_method = st.sidebar.radio(
"Choose Input Method",
["Real-time Webcam", "Upload Video", "Simulation Mode", "Upload an Image", "Capture Image"]
)
# Confidence threshold
confidence_threshold = st.sidebar.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
# Face detection toggle
use_face_detection = st.sidebar.checkbox("Enable Face Detection", value=True)
# Processing speed for video/simulation
if input_method in ["Upload Video", "Simulation Mode"]:
processing_speed = st.sidebar.slider(
"Processing Speed",
min_value=0.1,
max_value=2.0,
value=1.0,
step=0.1,
help="Adjust the speed of video processing (higher is faster)"
)
# History length for real-time tracking
if input_method in ["Real-time Webcam", "Upload Video", "Simulation Mode"]:
history_length = st.sidebar.slider(
"Emotion History Length (seconds)",
min_value=5,
max_value=60,
value=10,
step=5
)
# Load the selected model
classifier = load_emotion_detector(model_options[selected_model])
face_detector = load_face_detector()
# --- Utility Functions ---
def detect_faces(image):
"""Detect faces in an image using OpenCV."""
# Convert PIL Image to OpenCV format
if isinstance(image, Image.Image):
opencv_image = np.array(image)
opencv_image = opencv_image[:, :, ::-1].copy() # Convert RGB to BGR
else:
opencv_image = image
# Convert to grayscale for face detection
gray = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = face_detector.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
return faces, opencv_image
def process_image_for_emotion(image, face=None):
"""Process image for emotion detection."""
if isinstance(image, np.ndarray):
# Convert OpenCV image to PIL
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
if face is not None:
# Crop to face region
x, y, w, h = face
image = image.crop((x, y, x+w, y+h))
return image
def predict_emotion(image):
"""Predict emotion from an image."""
try:
results = classifier(image)
return results[0] # Return top prediction
except Exception as e:
st.error(f"Error during emotion prediction: {str(e)}")
return {"label": "Error", "score": 0.0}
def draw_faces_with_emotions(image, faces, emotions):
"""Draw rectangles around faces and label with emotions."""
img = image.copy()
# Define colors for different emotions (BGR format)
emotion_colors = {
"happy": (0, 255, 0), # Green
"sad": (255, 0, 0), # Blue
"neutral": (255, 255, 0), # Cyan
"angry": (0, 0, 255), # Red
"surprise": (255, 165, 0), # Orange
"fear": (128, 0, 128), # Purple
"disgust": (0, 128, 128) # Brown
}
# Default color for unknown emotions
default_color = (255, 255, 255) # White
for (x, y, w, h), emotion in zip(faces, emotions):
# Get color based on emotion (lowercase and remove any prefix)
emotion_key = emotion["label"].lower().split("_")[-1]
color = emotion_colors.get(emotion_key, default_color)
# Draw rectangle around face
cv2.rectangle(img, (x, y), (x+w, y+h), color, 2)
# Add emotion label and confidence
label = f"{emotion['label']} ({emotion['score']:.2f})"
cv2.putText(img, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return img
def generate_simulated_face(frame_num, canvas_size=(640, 480)):
"""Generate a simulated face with changing expressions."""
# Create a blank canvas
canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 230
# Calculate center position and face size
center_x, center_y = canvas_size[0] // 2, canvas_size[1] // 2
face_radius = min(canvas_size) // 4
# Face movement based on frame number
movement_x = int(np.sin(frame_num * 0.02) * 50)
movement_y = int(np.cos(frame_num * 0.03) * 30)
face_x = center_x + movement_x
face_y = center_y + movement_y
# Draw face circle
cv2.circle(canvas, (face_x, face_y), face_radius, (220, 210, 180), -1)
# Draw eyes
eye_y = face_y - int(face_radius * 0.2)
left_eye_x = face_x - int(face_radius * 0.5)
right_eye_x = face_x + int(face_radius * 0.5)
eye_size = max(5, face_radius // 8)
# Blink occasionally
if frame_num % 50 > 45: # Blink every 50 frames for 5 frames
cv2.ellipse(canvas, (left_eye_x, eye_y), (eye_size, 1), 0, 0, 360, (30, 30, 30), -1)
cv2.ellipse(canvas, (right_eye_x, eye_y), (eye_size, 1), 0, 0, 360, (30, 30, 30), -1)
else:
cv2.circle(canvas, (left_eye_x, eye_y), eye_size, (255, 255, 255), -1)
cv2.circle(canvas, (right_eye_x, eye_y), eye_size, (255, 255, 255), -1)
cv2.circle(canvas, (left_eye_x, eye_y), eye_size-2, (70, 70, 70), -1)
cv2.circle(canvas, (right_eye_x, eye_y), eye_size-2, (70, 70, 70), -1)
# Draw mouth - change shape based on frame number to simulate different emotions
mouth_y = face_y + int(face_radius * 0.3)
mouth_width = int(face_radius * 0.6)
mouth_height = int(face_radius * 0.2)
# Cycle through different emotions based on frame number
emotion_cycle = (frame_num // 100) % 4
if emotion_cycle == 0: # Happy
# Smile
cv2.ellipse(canvas, (face_x, mouth_y), (mouth_width, mouth_height),
0, 0, 180, (50, 50, 50), 2)
elif emotion_cycle == 1: # Sad
# Frown
cv2.ellipse(canvas, (face_x, mouth_y + mouth_height),
(mouth_width, mouth_height), 0, 180, 360, (50, 50, 50), 2)
elif emotion_cycle == 2: # Surprised
# O mouth
cv2.circle(canvas, (face_x, mouth_y), mouth_height, (50, 50, 50), 2)
else: # Neutral
# Straight line
cv2.line(canvas, (face_x - mouth_width//2, mouth_y),
(face_x + mouth_width//2, mouth_y), (50, 50, 50), 2)
# Add some text showing what emotion is being simulated
emotions = ["Happy", "Sad", "Surprised", "Neutral"]
cv2.putText(canvas, f"Simulating: {emotions[emotion_cycle]}",
(20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (50, 50, 50), 2)
cv2.putText(canvas, "Simulation Mode - No webcam required",
(20, canvas_size[1] - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (100, 100, 100), 1)
return canvas
def process_video_feed(feed_source, is_simulation=False):
"""Process video feed (webcam, video file, or simulation)."""
# Create placeholders
video_placeholder = st.empty()
metrics_placeholder = st.empty()
chart_placeholder = st.empty()
# Initialize session state for tracking emotions over time
if 'emotion_history' not in st.session_state:
st.session_state.emotion_history = {}
st.session_state.last_update_time = time.time()
st.session_state.frame_count = 0
st.session_state.simulation_frame = 0
# Start/Stop button
start_button = st.button("Start" if 'running' not in st.session_state or not st.session_state.running else "Stop")
if start_button:
st.session_state.running = not st.session_state.get('running', False)
# If running, capture and process video feed
if st.session_state.get('running', False):
try:
# Initialize video source
if is_simulation:
# No need to open a video source for simulation
pass
else:
cap = feed_source
# Check if video source opened successfully
if not cap.isOpened():
st.error("Could not open video source. Please check your settings.")
st.session_state.running = False
return
# Create deques for tracking emotions
emotion_deques = {}
timestamp_deque = deque(maxlen=30*history_length) # Store timestamps for X seconds at 30fps
while st.session_state.get('running', False):
# Get frame
if is_simulation:
# Generate a simulated frame
frame = generate_simulated_face(st.session_state.simulation_frame)
st.session_state.simulation_frame += 1
ret = True
else:
# Read from video source
ret, frame = cap.read()
if not ret:
if is_simulation:
st.error("Simulation error")
elif input_method == "Upload Video":
# For video files, loop back to the beginning
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
continue
else:
st.error("Failed to capture frame from video source")
break
# For webcam, flip horizontally for a more natural view
if input_method == "Real-time Webcam" and not is_simulation:
frame = cv2.flip(frame, 1)
# Increment frame count for FPS calculation
st.session_state.frame_count += 1
# Detect faces
if use_face_detection:
faces, _ = detect_faces(frame)
if len(faces) > 0:
# Process each face
emotions = []
for face in faces:
face_img = process_image_for_emotion(frame, face)
emotions.append(predict_emotion(face_img))
# Draw faces with emotions
frame = draw_faces_with_emotions(frame, faces, emotions)
# Update emotion history
current_time = time.time()
timestamp_deque.append(current_time)
for i, emotion in enumerate(emotions):
if emotion["score"] >= confidence_threshold:
face_id = f"Face {i+1}"
if face_id not in emotion_deques:
emotion_deques[face_id] = deque(maxlen=30*history_length)
emotion_deques[face_id].append({
"emotion": emotion["label"],
"confidence": emotion["score"],
"time": current_time
})
else:
# No faces detected
pass
else:
# Process the whole frame
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
emotion = predict_emotion(pil_image)
# Display emotion on frame
cv2.putText(
frame,
f"{emotion['label']} ({emotion['score']:.2f})",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2
)
# Update emotion history
current_time = time.time()
timestamp_deque.append(current_time)
if "Frame" not in emotion_deques:
emotion_deques["Frame"] = deque(maxlen=30*history_length)
emotion_deques["Frame"].append({
"emotion": emotion["label"],
"confidence": emotion["score"],
"time": current_time
})
# Calculate FPS
current_time = time.time()
time_diff = current_time - st.session_state.last_update_time
if time_diff >= 1.0: # Update every second
fps = st.session_state.frame_count / time_diff
st.session_state.last_update_time = current_time
st.session_state.frame_count = 0
# Update metrics
with metrics_placeholder.container():
cols = st.columns(3)
cols[0].metric("FPS", f"{fps:.1f}")
cols[1].metric("Faces Detected", len(faces) if use_face_detection else "N/A")
# Display the frame
video_placeholder.image(frame, channels="BGR", use_column_width=True)
# Update emotion history chart periodically
if len(timestamp_deque) > 0 and time_diff >= 0.5: # Update chart every 0.5 seconds
with chart_placeholder.container():
# Create tabs for each face
if len(emotion_deques) > 0:
tabs = st.tabs(list(emotion_deques.keys()))
for i, (face_id, emotion_data) in enumerate(emotion_deques.items()):
with tabs[i]:
if len(emotion_data) > 0:
# Count occurrences of each emotion
emotion_counts = {}
for entry in emotion_data:
emotion = entry["emotion"]
if emotion not in emotion_counts:
emotion_counts[emotion] = 0
emotion_counts[emotion] += 1
# Create pie chart for emotion distribution
fig = go.Figure(data=[go.Pie(
labels=list(emotion_counts.keys()),
values=list(emotion_counts.values()),
hole=.3
)])
fig.update_layout(title=f"Emotion Distribution - {face_id}")
st.plotly_chart(fig, use_container_width=True)
# Create line chart for emotion confidence over time
emotions = list(emotion_data)[-20:] # Get the last 20 entries
times = [(e["time"] - emotions[0]["time"]) for e in emotions]
confidences = [e["confidence"] for e in emotions]
emotion_labels = [e["emotion"] for e in emotions]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=times,
y=confidences,
mode='lines+markers',
text=emotion_labels,
hoverinfo='text+y'
))
fig.update_layout(
title=f"Emotion Confidence Over Time - {face_id}",
xaxis_title="Time (seconds)",
yaxis_title="Confidence",
yaxis=dict(range=[0, 1])
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info(f"No emotion data available for {face_id} yet.")
else:
st.info("No emotion data available yet.")
# Control processing speed for videos and simulation
if input_method in ["Upload Video", "Simulation Mode"]:
time.sleep(0.03 / processing_speed) # Adjust delay based on processing_speed
# Release resources when done
if not is_simulation and cap.isOpened():
cap.release()
except Exception as e:
st.error(f"Error during processing: {str(e)}")
st.session_state.running = False
else:
# Display a placeholder image when not running
placeholder_img = np.zeros((300, 500, 3), dtype=np.uint8)
cv2.putText(
placeholder_img,
"Click 'Start' to begin",
(80, 150),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2
)
video_placeholder.image(placeholder_img, channels="BGR", use_column_width=True)
# --- Process uploaded image ---
def process_static_image(image):
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Image", use_column_width=True)
# Process image
if use_face_detection:
faces, opencv_image = detect_faces(image)
if len(faces) > 0:
emotions = []
for face in faces:
face_img = process_image_for_emotion(image, face)
emotions.append(predict_emotion(face_img))
# Draw faces with emotions
result_image = draw_faces_with_emotions(opencv_image, faces, emotions)
with col2:
st.image(result_image, caption="Detected Emotions", channels="BGR", use_column_width=True)
# Display predictions
st.subheader("Detected Emotions:")
for i, (emotion, face) in enumerate(zip(emotions, faces)):
if emotion["score"] >= confidence_threshold:
st.write(f"Face {i+1}: **{emotion['label']}** (Confidence: {emotion['score']:.2f})")
# Show confidence bars
top_emotions = classifier(process_image_for_emotion(image, face))
labels = [item["label"] for item in top_emotions]
scores = [item["score"] for item in top_emotions]
fig = go.Figure(go.Bar(
x=scores,
y=labels,
orientation='h'
))
fig.update_layout(
title=f"Emotion Confidence - Face {i+1}",
xaxis_title="Confidence",
yaxis_title="Emotion",
height=300
)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("No faces detected in the image. Try another image or disable face detection.")
else:
# Process the whole image
prediction = predict_emotion(image)
st.subheader("Prediction:")
st.write(f"**Emotion:** {prediction['label']}")
st.write(f"**Confidence:** {prediction['score']:.2f}")
# --- Main App Logic ---
if input_method == "Upload an Image":
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Load and display image
image = Image.open(uploaded_file).convert("RGB")
process_static_image(image)
elif input_method == "Capture Image":
picture = st.camera_input("Capture an Image")
if picture is not None:
image = Image.open(picture).convert("RGB")
process_static_image(image)
elif input_method == "Upload Video":
uploaded_video = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov", "mkv"])
if uploaded_video is not None:
# Save the uploaded video to a temporary file
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_video.read())
# Open the video file
cap = cv2.VideoCapture(tfile.name)
# Process the video
process_video_feed(cap)
# Clean up the temporary file
os.unlink(tfile.name)
elif input_method == "Simulation Mode":
st.info("Simulation mode uses a generated animated face. No webcam required!")
process_video_feed(None, is_simulation=True)
elif input_method == "Real-time Webcam":
try:
# First check if we can access the webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
st.error("Could not open webcam. Please try the Simulation Mode instead.")
st.info("If you're using Streamlit in a browser, make sure you've granted camera permissions.")
# Show troubleshooting tips
with st.expander("Webcam Troubleshooting Tips"):
st.markdown("""
1. **Check Browser Permissions**: Make sure your browser has permission to access your camera.
2. **Close Other Applications**: Other applications might be using your webcam.
3. **Refresh the Page**: Sometimes simply refreshing can resolve the issue.
4. **Try a Different Browser**: Some browsers handle webcam access better than others.
5. **Use Simulation Mode**: If you cannot get the webcam working, use the Simulation Mode.
""")
else:
# Webcam available, process it
process_video_feed(cap)
except Exception as e:
st.error(f"Error accessing webcam: {str(e)}")
st.info("Please try the Simulation Mode instead, which doesn't require webcam access.")
# --- Footer ---
st.markdown("---")
st.markdown("""
**Tips for Best Results:**
- If webcam doesn't work, try "Simulation Mode" or "Upload Video" options
- Ensure good lighting for accurate face detection
- Position faces clearly in the frame
- Try different emotion models for comparison
- Adjust the confidence threshold if emotions aren't being detected correctly
""") |