File size: 7,272 Bytes
9ac410d 88d066d b65c592 9001776 2955054 b1ed479 2955054 b1ed479 94b205a b1ed479 05e4dfe 988ad8b b1ed479 2955054 b1ed479 0274b27 63bbd4e 7045659 4e89574 7b3f010 63bbd4e 5196b87 63bbd4e 0b36569 80c8103 0b36569 179aead 63bbd4e 0b36569 63bbd4e 0b36569 63bbd4e 0b36569 63bbd4e 3e06760 63bbd4e 0b36569 63bbd4e 3e06760 63bbd4e 3e06760 63bbd4e 50f674a b77a48d 3e06760 50f674a 9c4995a 63bbd4e 179aead 658a20b 3e06760 658a20b 63bbd4e 0b36569 63bbd4e 94b205a 63bbd4e 0b36569 04ccb1c 784e033 04ccb1c 179aead 4f1100d 6bf9880 dac44fa 988ad8b 6bf9880 dac44fa 6bf9880 dac44fa 441b568 dac44fa 179aead dac44fa 6bf9880 b77a48d dac44fa 05e4dfe 641cd92 dac44fa 641cd92 0fe0c6d dac44fa 6bf9880 80c8103 6bf9880 4f1100d eea17f0 99f18bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
import time
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
expander.write('''
**Supported File Formats**
This app accepts files in .pdf formats.
**How to Use**
Paste the job description first. Then, upload the resume of each applicant to retrieve the results.
**Usage Limits**
For each applicant you can upload their resume and request results once (1 request per applicant's resume).
At the bottom of the app, you can also upload an applicant's resume once (1 request) to visualize their profile as a treemap chart as well as the results in a matrix heatmap. If you hover over the interactive graphs, an icon will appear to download them.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**File Handling and Errors**
The app may display an error message if your file is corrupt, or has other errors.
For any errors or inquiries, please contact us at [email protected]
''')
st.title("AI Resume Analysis based on Keywords App")
st.divider()
job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")
if 'applicant_data' not in st.session_state:
st.session_state['applicant_data'] = {}
max_attempts = 1
for i in range(1, 51): # Looping for 2 applicants
st.subheader(f"Applicant {i} Resume", divider="green")
applicant_key = f"applicant_{i}"
upload_key = f"candidate_{i}"
if applicant_key not in st.session_state['applicant_data']:
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
if uploaded_file:
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
with st.expander(f"See Applicant's {i} resume"):
st.write(text_data)
data = pd.Series(text_data, name='Text')
result = pd.concat([job, data])
vectorizer = TfidfVectorizer(stop_words = 'english')
tfidf_matrix = vectorizer.fit_transform(result)
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
for j, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
with st.popover(f"See Result for Applicant {i}"):
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
st.info(
f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
st.session_state['applicant_data'][applicant_key]['analysis_done'] = True
else:
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
st.divider()
st.subheader("Visualise", divider="blue")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 1
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader("Upload Applicant's resume", type="pdf", key="applicant 1")
if uploaded_files:
st.session_state['upload_count'] += 1
with st.spinner("Wait for it...", show_time=True):
time.sleep(2)
pdf_reader = PdfReader(uploaded_files)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
data = pd.Series(text_data, name='Text')
frames = [job, data]
result = pd.concat(frames)
model = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country", "organization", "role", "skills"]
entities = model.predict_entities(text_data, labels)
df = pd.DataFrame(entities)
st.subheader("Applicant's Profile", divider = "orange")
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig, key="figure 1")
vectorizer = TfidfVectorizer(stop_words = 'english')
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Similarity between Applicant's Profile and Job Description", divider = "orange")
fig = px.imshow(cosine_sim_df, text_auto=True,
labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
x=['Resume', 'Jon Description'],
y=['Resume', 'Job Description'])
st.plotly_chart(fig, key="figure 2")
else:
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|