File size: 7,272 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
9001776
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
94b205a
b1ed479
 
05e4dfe
988ad8b
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
0274b27
63bbd4e
7045659
4e89574
7b3f010
63bbd4e
5196b87
63bbd4e
 
0b36569
80c8103
0b36569
179aead
 
63bbd4e
 
0b36569
63bbd4e
 
0b36569
63bbd4e
 
0b36569
63bbd4e
 
 
 
3e06760
63bbd4e
 
 
 
 
0b36569
63bbd4e
3e06760
63bbd4e
3e06760
63bbd4e
50f674a
b77a48d
3e06760
 
50f674a
9c4995a
 
63bbd4e
179aead
658a20b
3e06760
658a20b
63bbd4e
0b36569
63bbd4e
94b205a
63bbd4e
 
0b36569
04ccb1c
784e033
04ccb1c
 
179aead
4f1100d
6bf9880
dac44fa
 
988ad8b
6bf9880
dac44fa
6bf9880
 
 
 
 
 
 
 
 
 
dac44fa
 
 
 
 
 
 
441b568
dac44fa
179aead
dac44fa
6bf9880
b77a48d
dac44fa
 
 
 
05e4dfe
641cd92
dac44fa
641cd92
0fe0c6d
 
dac44fa
6bf9880
80c8103
6bf9880
 
4f1100d
 
 
 
eea17f0
 
 
 
 
99f18bc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
import time

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload the resume of each applicant to retrieve the results.  
    
    **Usage Limits**
    For each applicant you can upload their resume and request results once (1 request per applicant's resume).
    At the bottom of the app, you can also upload an applicant's resume once (1 request) to visualize their profile as a treemap chart as well as the results in a matrix heatmap. If you hover over the interactive graphs, an icon will appear to download them.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')



st.title("AI Resume Analysis based on Keywords App")
st.divider()

job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")

if 'applicant_data' not in st.session_state:
    st.session_state['applicant_data'] = {}

max_attempts = 1

for i in range(1, 51):  # Looping for 2 applicants
    st.subheader(f"Applicant {i} Resume", divider="green")
    applicant_key = f"applicant_{i}"
    upload_key = f"candidate_{i}"

    if applicant_key not in st.session_state['applicant_data']:
        st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}

    if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
        uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)

        if uploaded_file:
            st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
            st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag

        if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
            pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()

            with st.expander(f"See Applicant's {i} resume"):
                st.write(text_data)

            data = pd.Series(text_data, name='Text')
            result = pd.concat([job, data])

            vectorizer = TfidfVectorizer(stop_words = 'english')
            tfidf_matrix = vectorizer.fit_transform(result)
            cosine_sim_matrix = cosine_similarity(tfidf_matrix)


            
            for j, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                with st.popover(f"See Result for Applicant {i}"):
                    st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
                    st.info(
                        f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = True

    else:
        st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
        if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
            st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")


      


st.divider()
st.subheader("Visualise", divider="blue")

if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0
    max_attempts = 1

if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader("Upload Applicant's resume", type="pdf", key="applicant 1")
    if uploaded_files:
        st.session_state['upload_count'] += 1
        with st.spinner("Wait for it...", show_time=True):
            time.sleep(2)
            pdf_reader = PdfReader(uploaded_files)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()

            data = pd.Series(text_data, name='Text')
            frames = [job, data]
            result = pd.concat(frames)
            model = GLiNER.from_pretrained("urchade/gliner_base")
            labels = ["person", "country", "organization", "role", "skills"]
            entities = model.predict_entities(text_data, labels)
            df = pd.DataFrame(entities)
            st.subheader("Applicant's Profile", divider = "orange")
            fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                             values='score', color='label')
            fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
            st.plotly_chart(fig, key="figure 1")
            vectorizer = TfidfVectorizer(stop_words = 'english')
            tfidf_matrix = vectorizer.fit_transform(result)
            tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
            cosine_sim_matrix = cosine_similarity(tfidf_matrix)
            cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
            st.subheader("Similarity between Applicant's Profile and Job Description", divider = "orange")

            fig = px.imshow(cosine_sim_df, text_auto=True,
                            labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                            x=['Resume', 'Jon Description'],
                            y=['Resume', 'Job Description'])
            st.plotly_chart(fig, key="figure 2")
else:
    st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
    if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
        st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")