Update app.py
Browse files
app.py
CHANGED
@@ -40,96 +40,61 @@ with st.sidebar:
|
|
40 |
''')
|
41 |
|
42 |
|
|
|
43 |
st.title("AI Resume Analysis based on Keywords App")
|
44 |
st.divider()
|
45 |
|
46 |
-
st.
|
47 |
-
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key="text 1")
|
48 |
-
job = pd.Series(txt, name="Text")
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
st.session_state['upload_count'] = 0
|
53 |
|
54 |
max_attempts = 20
|
55 |
-
if st.session_state['upload_count'] < max_attempts:
|
56 |
-
uploaded_files = st.file_uploader("Upload Applicant's 1 resume", type="pdf", key="candidate 1")
|
57 |
-
if uploaded_files:
|
58 |
-
st.session_state['upload_count'] += 1
|
59 |
-
|
60 |
-
pdf_reader = PdfReader(uploaded_files)
|
61 |
-
text_data = ""
|
62 |
-
for page in pdf_reader.pages:
|
63 |
-
text_data += page.extract_text()
|
64 |
-
with st.expander("See Applicant'1 resume"):
|
65 |
-
st.write(text_data)
|
66 |
-
|
67 |
-
data = pd.Series(text_data, name='Text')
|
68 |
-
frames = [job, data]
|
69 |
-
result = pd.concat(frames)
|
70 |
-
|
71 |
-
|
72 |
-
vectorizer = TfidfVectorizer()
|
73 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
74 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
75 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
76 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
77 |
-
|
78 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
79 |
-
with st.popover("See result"):
|
80 |
-
st.write(f"Similarity of job description with Applicant's 1 resume based on keywords: {similarity_score:.2f}")
|
81 |
-
st.info(
|
82 |
-
"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 1 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 1 resume and job description.")
|
83 |
-
else:
|
84 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
|
85 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
86 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
87 |
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
89 |
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
|
95 |
-
st.
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
if st.session_state['upload_count'] < max_attempts:
|
101 |
-
uploaded_files = st.file_uploader("Upload Applicant's 2 resume", type="pdf", key="candidate 2")
|
102 |
-
if uploaded_files:
|
103 |
-
st.session_state['upload_count'] += 1
|
104 |
-
|
105 |
-
pdf_reader = PdfReader(uploaded_files)
|
106 |
-
text_data = ""
|
107 |
-
for page in pdf_reader.pages:
|
108 |
-
text_data += page.extract_text()
|
109 |
-
with st.expander("See Applicant'2 resume"):
|
110 |
st.write(text_data)
|
111 |
-
|
112 |
data = pd.Series(text_data, name='Text')
|
113 |
-
|
114 |
-
result = pd.concat(frames)
|
115 |
-
|
116 |
|
117 |
vectorizer = TfidfVectorizer()
|
118 |
tfidf_matrix = vectorizer.fit_transform(result)
|
119 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
120 |
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
121 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
122 |
|
123 |
-
|
|
|
124 |
with st.popover("See result"):
|
125 |
-
st.write(f"Similarity
|
126 |
st.info(
|
127 |
-
|
128 |
-
|
129 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
|
130 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
131 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
132 |
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
|
|
|
40 |
''')
|
41 |
|
42 |
|
43 |
+
|
44 |
st.title("AI Resume Analysis based on Keywords App")
|
45 |
st.divider()
|
46 |
|
47 |
+
job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")
|
|
|
|
|
48 |
|
49 |
+
if 'applicant_data' not in st.session_state:
|
50 |
+
st.session_state['applicant_data'] = {}
|
|
|
51 |
|
52 |
max_attempts = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
for i in range(1, 3): # Looping for 2 applicants
|
55 |
+
st.subheader(f"Applicant Resume {i}", divider="green")
|
56 |
+
applicant_key = f"applicant_{i}"
|
57 |
+
upload_key = f"candidate_{i}"
|
58 |
|
59 |
+
if applicant_key not in st.session_state['applicant_data']:
|
60 |
+
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
|
61 |
|
62 |
+
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
|
63 |
+
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
|
64 |
|
65 |
+
if uploaded_file:
|
66 |
+
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
|
67 |
+
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
|
68 |
+
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
|
69 |
|
70 |
+
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
|
71 |
+
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
|
72 |
+
text_data = ""
|
73 |
+
for page in pdf_reader.pages:
|
74 |
+
text_data += page.extract_text()
|
75 |
|
76 |
+
with st.expander(f"See Applicant's {i} resume"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
st.write(text_data)
|
78 |
+
|
79 |
data = pd.Series(text_data, name='Text')
|
80 |
+
result = pd.concat([job, data])
|
|
|
|
|
81 |
|
82 |
vectorizer = TfidfVectorizer()
|
83 |
tfidf_matrix = vectorizer.fit_transform(result)
|
|
|
84 |
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
|
|
85 |
|
86 |
+
st.subheader(f"Similarity Analysis for Applicant {i}")
|
87 |
+
for j, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
88 |
with st.popover("See result"):
|
89 |
+
st.write(f"Similarity based on keyword: {similarity_score:.2f}")
|
90 |
st.info(
|
91 |
+
f"A score closer to 1 means higher similarity between Applicant's {i} resume and job description.")
|
92 |
+
st.session_state['applicant_data'][applicant_key]['analysis_done'] = True
|
|
|
|
|
|
|
93 |
|
94 |
+
else:
|
95 |
+
st.warning(f"Applicant {i} has reached the maximum upload attempts ({max_attempts}).")
|
96 |
+
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
|
97 |
+
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
|
98 |
|
99 |
|
100 |
|