File size: 6,299 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
4e89574
b1ed479
 
4e89574
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
0274b27
63bbd4e
7045659
4e89574
7b3f010
63bbd4e
5196b87
63bbd4e
 
0b36569
4fae0db
0b36569
179aead
 
63bbd4e
 
0b36569
63bbd4e
 
0b36569
63bbd4e
 
0b36569
63bbd4e
 
 
 
3e06760
63bbd4e
 
 
 
 
0b36569
63bbd4e
3e06760
63bbd4e
3e06760
63bbd4e
50f674a
3e06760
 
 
50f674a
179aead
63bbd4e
179aead
658a20b
3e06760
658a20b
63bbd4e
0b36569
63bbd4e
 
 
 
0b36569
04ccb1c
784e033
04ccb1c
 
179aead
 
 
 
 
 
 
 
 
 
 
f6b2b7f
 
 
 
 
 
 
179aead
f6b2b7f
 
 
 
 
 
 
 
179aead
f6b2b7f
 
 
 
179aead
cd63bad
179aead
 
 
 
04ccb1c
 
 
eea17f0
 
 
 
 
 
 
99f18bc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload the resume of each applicant to retrieve the results. At the bottom of the app, you could upload each applicant's resume to visualize their profile as a treemap chart as well as the results in a matrix heatmap. 
    
    **Usage Limits**
    You can request results up to 20 times in total.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')



st.title("AI Resume Analysis based on Keywords App")
st.divider()

job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")

if 'applicant_data' not in st.session_state:
    st.session_state['applicant_data'] = {}

max_attempts = 20

for i in range(1, 51):  # Looping for 2 applicants
    st.subheader(f"Applicant {i} Resume", divider="green")
    applicant_key = f"applicant_{i}"
    upload_key = f"candidate_{i}"

    if applicant_key not in st.session_state['applicant_data']:
        st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}

    if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
        uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)

        if uploaded_file:
            st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
            st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag

        if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
            pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()

            with st.expander(f"See Applicant's {i} resume"):
                st.write(text_data)

            data = pd.Series(text_data, name='Text')
            result = pd.concat([job, data])

            vectorizer = TfidfVectorizer()
            tfidf_matrix = vectorizer.fit_transform(result)
            cosine_sim_matrix = cosine_similarity(tfidf_matrix)

            
            for j, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                with st.popover(f"See Result for Applicant {i}"):
                    st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
                    st.info(
                        f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = True

    else:
        st.warning(f"Applicant {i} has reached the maximum upload attempts ({max_attempts}).")
        if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
            st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")


      


st.divider()

st.subheader("Visualise", divider="blue")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 3
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader("Upload Applicant's resume", type="pdf")
    if uploaded_files:
        st.session_state['upload_count'] += 1

        with st.spinner("Wait for it...", show_time=True):
            time.sleep(2)
            pdf_reader = PdfReader(uploaded_files)
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()
            
                data = pd.Series(text_data, name='Text')
                frames = [job, data]
                result = pd.concat(frames)
                model = GLiNER.from_pretrained("urchade/gliner_base")
                labels = ["person", "country", "organization", "role", "skills"]
                entities = model.predict_entities(text_data, labels)
                df = pd.DataFrame(entities)
                fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                             values='score', color='label')
                fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig)
 
             

                
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
    if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
        st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")