File size: 7,269 Bytes
9ac410d 88d066d b65c592 2955054 b1ed479 2955054 b1ed479 2955054 b1ed479 2955054 b1ed479 2955054 b1ed479 591c7c7 0274b27 5929cca 7b3f010 5196b87 caf704e ebf4966 0274b27 ebf4966 caf704e 0274b27 caf704e 0274b27 591c7c7 0274b27 e1fae35 0274b27 1b92119 0274b27 446b3f9 0274b27 591c7c7 0274b27 99f18bc 1b92119 34d0e07 0274b27 1d586a2 34d0e07 6ae6756 0274b27 e1fae35 34d0e07 99f18bc 2e1adec 591c7c7 924c1f2 5b290a2 924c1f2 5b290a2 924c1f2 2e1adec 924c1f2 1b92119 924c1f2 1b92119 924c1f2 591c7c7 924c1f2 446b3f9 3b07ba0 446b3f9 eea17f0 446b3f9 eea17f0 99f18bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
expander.write('''
**Supported File Formats**
This app accepts files in .pdf formats.
**How to Use**
Paste the job description first. Then, upload your resume to retrieve the results. You can upload up to 10 resumes in total.
**Usage Limits**
You can request results up to 10 times in total.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**File Handling and Errors**
The app may display an error message if your file is corrupt, or has other errors.
For any errors or inquiries, please contact us at [email protected]
''')
st.subheader ("Candidate Profile 1", divider = "red")
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key = "text 1")
job = pd.Series(txt, name="Text")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 3
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader(
"Upload your resume", accept_multiple_files=True, type="pdf", key="candidate 1"
)
if uploaded_files:
st.session_state['upload_count'] += 1
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
data = pd.Series(text_data, name = 'Text')
frames = [job, data]
result = pd.concat(frames)
model = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
entities = model.predict_entities(text_data, labels)
df = pd.DataFrame(entities)
st.subheader("Profile of candidate 1", divider = "green")
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig1)
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Measuring similarity between keywords of candidate profile 1 and job description", divider = "green")
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
x=['Resume 1', 'Jon Description'],
y=['Resume 1', 'Job Description'])
st.plotly_chart(fig2)
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
st.write(f"Similarity of job description with candidate profile 1. {i + 1}: {similarity_score:.4f}")
st.info("A score closer to 1 (0.80, 0.90) means higher similarity between candidate profile 1 and job description. A score closer to 0 (0.20, 0.30) means lower similarity between candidate profile 1 and job description.")
else:
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
st.subheader ("Candidate Profile 1", divider = "red")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 3
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader(
"Upload your resume", accept_multiple_files=True, type="pdf", key="candidate 2"
)
if uploaded_files:
st.session_state['upload_count'] += 1
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
data = pd.Series(text_data, name = 'Text')
frames = [job, data]
result = pd.concat(frames)
model = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
entities = model.predict_entities(text_data, labels)
df = pd.DataFrame(entities)
st.subheader("Profile of candidate 1")
fig3 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig3.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig3)
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Measuring similarity between keywords of candidate profile 1 and job description")
fig4 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
x=['Resume 1', 'Jon Description'],
y=['Resume 1', 'Job Description'])
st.plotly_chart(fig4)
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
st.write(f"Similarity of job description with candidate profile 1. {i + 1}: {similarity_score:.4f}")
st.info("A score closer to 1 (0.80, 0.90) means higher similarity between candidate profile 1 and job description. A score closer to 0 (0.20, 0.30) means lower similarity between candidate profile 1 and job description.")
else:
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|