Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
import os | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Submission Code Preliminaries | |
from torchvision import models | |
from torch.utils.data import Dataset | |
import librosa | |
import torch | |
from tqdm import tqdm | |
from torch.utils.data import DataLoader | |
from torch import nn | |
model = models.alexnet(pretrained=True) | |
model.features[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, 1) | |
model.load_state_dict(torch.load("chainsaw_model.pth")) | |
class AudioDataset(Dataset): | |
def __init__(self, dataset, max_length): | |
self.dataset = dataset | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.dataset) | |
def __getitem__(self, idx): | |
array = self.dataset[idx]["audio"]["array"] | |
spectrogram = librosa.feature.melspectrogram(y=array, sr=16000) | |
spectrogram = torch.tensor(spectrogram, dtype=torch.float32) | |
# normalize the spectrogram | |
spectrogram = (spectrogram - spectrogram.mean()) / spectrogram.std() | |
label = torch.tensor(self.dataset[idx]["label"]) | |
if spectrogram.shape[1] > self.max_length: | |
spectrogram = spectrogram[:, :self.max_length] | |
if spectrogram.shape[1] < self.max_length: | |
# duplicate the last frame until the spectrogram is the max length | |
spectrogram = torch.cat([spectrogram, spectrogram[:, -1].unsqueeze(1).repeat(1, self.max_length - spectrogram.shape[1])], dim=1) | |
spectrogram = spectrogram.unsqueeze(0) | |
return spectrogram, label | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-1) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"chainsaw": 0, | |
"environment": 1 | |
} | |
# Load and prepare the dataset | |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
test_dataset = test_dataset[:10] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
test_dataset = AudioDataset(test_dataset, max_length=100) | |
print("Currently pinging test api. Please make sure you see this!") | |
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False) | |
predictions = [] | |
for batch in tqdm(test_loader): | |
out = model(batch[0]) | |
out_logits = torch.sigmoid(out) | |
predictions.extend(out_logits.round().tolist()) | |
# Make random predictions (placeholder for actual model inference) | |
predictions = [x[0] for x in predictions] | |
true_labels = test_dataset["label"] | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |