frugal-ai / tasks /audio.py
nkasmanoff's picture
Update tasks/audio.py
573a48b verified
raw
history blame contribute delete
5.04 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
# Submission Code Preliminaries
from torchvision import models
from torch.utils.data import Dataset
import librosa
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch import nn
model = models.alexnet(pretrained=True)
model.features[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, 1)
model.load_state_dict(torch.load("chainsaw_model.pth"))
class AudioDataset(Dataset):
def __init__(self, dataset, max_length):
self.dataset = dataset
self.max_length = max_length
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
array = self.dataset[idx]["audio"]["array"]
spectrogram = librosa.feature.melspectrogram(y=array, sr=16000)
spectrogram = torch.tensor(spectrogram, dtype=torch.float32)
# normalize the spectrogram
spectrogram = (spectrogram - spectrogram.mean()) / spectrogram.std()
label = torch.tensor(self.dataset[idx]["label"])
if spectrogram.shape[1] > self.max_length:
spectrogram = spectrogram[:, :self.max_length]
if spectrogram.shape[1] < self.max_length:
# duplicate the last frame until the spectrogram is the max length
spectrogram = torch.cat([spectrogram, spectrogram[:, -1].unsqueeze(1).repeat(1, self.max_length - spectrogram.shape[1])], dim=1)
spectrogram = spectrogram.unsqueeze(0)
return spectrogram, label
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
test_dataset = test_dataset[:10]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
test_dataset = AudioDataset(test_dataset, max_length=100)
print("Currently pinging test api. Please make sure you see this!")
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
predictions = []
for batch in tqdm(test_loader):
out = model(batch[0])
out_logits = torch.sigmoid(out)
predictions.extend(out_logits.round().tolist())
# Make random predictions (placeholder for actual model inference)
predictions = [x[0] for x in predictions]
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results