Spaces:
Sleeping
Sleeping
File size: 5,036 Bytes
4d6e8c2 fe4a4cb 3b09640 fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 3b09640 ea365d5 4d6e8c2 70f5f26 1c33274 70f5f26 fe4a4cb 3b09640 1c33274 70f5f26 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 70f5f26 4d6e8c2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 fe4a4cb 573a48b fe4a4cb ea365d5 bdedc60 ea365d5 573a48b fe4a4cb 573a48b fe4a4cb ea365d5 fe4a4cb 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 4d6e8c2 70f5f26 4d6e8c2 fe4a4cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
# Submission Code Preliminaries
from torchvision import models
from torch.utils.data import Dataset
import librosa
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch import nn
model = models.alexnet(pretrained=True)
model.features[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, 1)
model.load_state_dict(torch.load("chainsaw_model.pth"))
class AudioDataset(Dataset):
def __init__(self, dataset, max_length):
self.dataset = dataset
self.max_length = max_length
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
array = self.dataset[idx]["audio"]["array"]
spectrogram = librosa.feature.melspectrogram(y=array, sr=16000)
spectrogram = torch.tensor(spectrogram, dtype=torch.float32)
# normalize the spectrogram
spectrogram = (spectrogram - spectrogram.mean()) / spectrogram.std()
label = torch.tensor(self.dataset[idx]["label"])
if spectrogram.shape[1] > self.max_length:
spectrogram = spectrogram[:, :self.max_length]
if spectrogram.shape[1] < self.max_length:
# duplicate the last frame until the spectrogram is the max length
spectrogram = torch.cat([spectrogram, spectrogram[:, -1].unsqueeze(1).repeat(1, self.max_length - spectrogram.shape[1])], dim=1)
spectrogram = spectrogram.unsqueeze(0)
return spectrogram, label
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
test_dataset = test_dataset[:10]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
test_dataset = AudioDataset(test_dataset, max_length=100)
print("Currently pinging test api. Please make sure you see this!")
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
predictions = []
for batch in tqdm(test_loader):
out = model(batch[0])
out_logits = torch.sigmoid(out)
predictions.extend(out_logits.round().tolist())
# Make random predictions (placeholder for actual model inference)
predictions = [x[0] for x in predictions]
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |