File size: 5,036 Bytes
4d6e8c2
fe4a4cb
 
 
 
3b09640
fe4a4cb
4d6e8c2
fe4a4cb
4d6e8c2
3b09640
 
 
ea365d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
70f5f26
1c33274
70f5f26
fe4a4cb
3b09640
1c33274
70f5f26
4d6e8c2
 
fe4a4cb
70f5f26
 
fe4a4cb
70f5f26
4d6e8c2
fe4a4cb
4d6e8c2
fe4a4cb
 
 
 
 
 
 
3b09640
 
 
fe4a4cb
 
 
573a48b
fe4a4cb
 
 
 
 
 
 
 
 
ea365d5
bdedc60
ea365d5
 
 
 
 
 
573a48b
fe4a4cb
573a48b
fe4a4cb
ea365d5
fe4a4cb
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()


# Submission Code Preliminaries
from torchvision import models
from torch.utils.data import Dataset
import librosa
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch import nn

model = models.alexnet(pretrained=True)
model.features[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, 1)
model.load_state_dict(torch.load("chainsaw_model.pth"))


class AudioDataset(Dataset):
    def __init__(self, dataset, max_length):
        self.dataset = dataset
        self.max_length = max_length

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        array = self.dataset[idx]["audio"]["array"]
        spectrogram = librosa.feature.melspectrogram(y=array, sr=16000)

        spectrogram = torch.tensor(spectrogram, dtype=torch.float32)
        # normalize the spectrogram
        spectrogram = (spectrogram - spectrogram.mean()) / spectrogram.std()
            
        label = torch.tensor(self.dataset[idx]["label"])
        if spectrogram.shape[1] > self.max_length:
            spectrogram = spectrogram[:, :self.max_length]
        if spectrogram.shape[1] < self.max_length:
            # duplicate the last frame until the spectrogram is the max length
            spectrogram = torch.cat([spectrogram, spectrogram[:, -1].unsqueeze(1).repeat(1, self.max_length - spectrogram.shape[1])], dim=1)
        spectrogram = spectrogram.unsqueeze(0)
        return spectrogram, label

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/audio"



@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    test_dataset = test_dataset[:10]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    test_dataset = AudioDataset(test_dataset, max_length=100)
    print("Currently pinging test api. Please make sure you see this!")
    test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
    predictions = []
    for batch in tqdm(test_loader):
        out = model(batch[0])
        out_logits = torch.sigmoid(out)
        predictions.extend(out_logits.round().tolist())
        
    # Make random predictions (placeholder for actual model inference)
    predictions = [x[0] for x in predictions]
    true_labels = test_dataset["label"]

    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results