from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random import os from .utils.evaluation import AudioEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from dotenv import load_dotenv load_dotenv() # Submission Code Preliminaries from torchvision import models from torch.utils.data import Dataset import librosa import torch from tqdm import tqdm from torch.utils.data import DataLoader from torch import nn model = models.alexnet(pretrained=True) model.features[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) model.classifier[-1] = nn.Linear(model.classifier[-1].in_features, 1) model.load_state_dict(torch.load("chainsaw_model.pth")) class AudioDataset(Dataset): def __init__(self, dataset, max_length): self.dataset = dataset self.max_length = max_length def __len__(self): return len(self.dataset) def __getitem__(self, idx): array = self.dataset[idx]["audio"]["array"] spectrogram = librosa.feature.melspectrogram(y=array, sr=16000) spectrogram = torch.tensor(spectrogram, dtype=torch.float32) # normalize the spectrogram spectrogram = (spectrogram - spectrogram.mean()) / spectrogram.std() label = torch.tensor(self.dataset[idx]["label"]) if spectrogram.shape[1] > self.max_length: spectrogram = spectrogram[:, :self.max_length] if spectrogram.shape[1] < self.max_length: # duplicate the last frame until the spectrogram is the max length spectrogram = torch.cat([spectrogram, spectrogram[:, -1].unsqueeze(1).repeat(1, self.max_length - spectrogram.shape[1])], dim=1) spectrogram = spectrogram.unsqueeze(0) return spectrogram, label router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/audio" @router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION) async def evaluate_audio(request: AudioEvaluationRequest): """ Evaluate audio classification for rainforest sound detection. Current Model: Random Baseline - Makes random predictions from the label space (0-1) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "chainsaw": 0, "environment": 1 } # Load and prepare the dataset # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] test_dataset = test_dataset[:10] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- test_dataset = AudioDataset(test_dataset, max_length=100) print("Currently pinging test api. Please make sure you see this!") test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False) predictions = [] for batch in tqdm(test_loader): out = model(batch[0]) out_logits = torch.sigmoid(out) predictions.extend(out_logits.round().tolist()) # Make random predictions (placeholder for actual model inference) predictions = [x[0] for x in predictions] true_labels = test_dataset["label"] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results