File size: 17,325 Bytes
2117a04
 
cf13b1c
 
 
 
dc9182d
cf13b1c
dc9182d
cf13b1c
dc9182d
 
8b177d4
cf13b1c
dc9182d
2117a04
0253f2a
cf13b1c
2117a04
cf13b1c
dc9182d
2117a04
 
 
dc9182d
 
 
 
 
 
 
 
 
2117a04
 
 
dc9182d
 
 
 
 
2117a04
dc9182d
 
 
2117a04
dc9182d
2117a04
dc9182d
2117a04
 
 
 
dc9182d
 
2117a04
 
 
dc9182d
 
0253f2a
dc9182d
 
2117a04
dc9182d
 
e6f4968
2117a04
 
 
e6f4968
 
 
2117a04
e6f4968
 
 
 
2117a04
 
e6f4968
284013e
dc9182d
2117a04
 
 
dc9182d
 
2117a04
dc9182d
 
 
2117a04
dc9182d
 
 
2117a04
 
 
 
 
 
8b177d4
2117a04
0253f2a
cf13b1c
2117a04
0253f2a
 
 
2117a04
cf13b1c
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6924925
 
 
 
 
 
 
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d7486
dc9182d
6929f59
2117a04
 
 
 
 
6929f59
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9182d
ca8e367
2117a04
 
 
 
 
ca8e367
 
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0253f2a
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
6929f59
2117a04
 
 
6929f59
 
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6929f59
 
2117a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9182d
 
2117a04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# app/main.py

import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator, Union

from datetime import datetime

from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from pydantic import BaseModel

from .blackbox import Blackbox, ImageResponse
from .image import to_data_uri, ImageType

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '')  # Comma-separated available models

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Process available models
if AVAILABLE_MODELS:
    AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
else:
    AVAILABLE_MODELS = []  # If empty, all models are available

# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

# Define cleanup interval and window
CLEANUP_INTERVAL = 60  # seconds
RATE_LIMIT_WINDOW = 60  # seconds

async def cleanup_rate_limit_stores():
    """
    Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
    """
    while True:
        current_time = time.time()
        ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
        for ip in ips_to_delete:
            del rate_limit_store[ip]
            logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
        await asyncio.sleep(CLEANUP_INTERVAL)

async def rate_limiter_per_ip(request: Request):
    """
    Rate limiter that enforces a limit based on the client's IP address.
    """
    client_ip = request.client.host
    current_time = time.time()

    # Initialize or update the count and timestamp
    if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
        rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
        rate_limit_store[client_ip]["count"] += 1

async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
    """
    Dependency to extract and validate the API key from the Authorization header.
    """
    client_ip = request.client.host
    if authorization is None or not authorization.startswith('Bearer '):
        logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# FastAPI app setup
app = FastAPI()

# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_rate_limit_stores())
    logger.info("Started rate limit store cleanup task.")

# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    response = await call_next(request)
    return response

# Request Models
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    webSearchMode: Optional[bool] = False  # Custom parameter
    image: Optional[str] = None  # Base64-encoded image

class TokenizerRequest(BaseModel):
    text: str

def calculate_estimated_cost(prompt_tokens: int, completion_tokens: int) -> float:
    """
    Calculate the estimated cost based on the number of tokens.
    Replace the pricing below with your actual pricing model.
    """
    # Example pricing: $0.00000268 per token
    cost_per_token = 0.00000268
    return round((prompt_tokens + completion_tokens) * cost_per_token, 8)

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": content
                },
                "finish_reason": finish_reason
            }
        ],
        "usage": None,  # To be filled in non-streaming responses
    }

@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
            raise HTTPException(status_code=400, detail="Requested model is not available.")

        # Process the image if provided
        image_data = None
        image_name = None
        if request.image:
            try:
                # Validate and process the base64 image
                image_data = to_data_uri(request.image)
                image_name = "uploaded_image"
                logger.info(f"Image data received and processed from IP: {client_ip}")
            except Exception as e:
                logger.error(f"Image processing failed: {e}")
                raise HTTPException(status_code=400, detail="Invalid image data provided.")

        # Process the request with actual message content, but don't log it
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],  # Actual message content used here
            proxy=None,
            image=image_data,
            image_name=image_name,
            webSearchMode=request.webSearchMode
        )

        if request.stream:
            async def generate():
                try:
                    assistant_content = ""
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            # Handle image responses if necessary
                            image_markdown = f"![image]({chunk.url})\n"
                            assistant_content += image_markdown
                            response_chunk = create_response(image_markdown, request.model, finish_reason=None)
                        else:
                            assistant_content += chunk
                            # Yield the chunk as a partial choice
                            response_chunk = {
                                "id": f"chatcmpl-{uuid.uuid4()}",
                                "object": "chat.completion.chunk",
                                "created": int(datetime.now().timestamp()),
                                "model": request.model,
                                "choices": [
                                    {
                                        "index": 0,
                                        "delta": {"content": chunk, "role": "assistant"},
                                        "finish_reason": None,
                                    }
                                ],
                                "usage": None,  # Usage can be updated if you track tokens in real-time
                            }
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    # After all chunks are sent, send the final message with finish_reason
                    prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
                    completion_tokens = len(assistant_content.split())
                    total_tokens = prompt_tokens + completion_tokens
                    estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)

                    final_response = {
                        "id": f"chatcmpl-{uuid.uuid4()}",
                        "object": "chat.completion",
                        "created": int(datetime.now().timestamp()),
                        "model": request.model,
                        "choices": [
                            {
                                "message": {
                                    "role": "assistant",
                                    "content": assistant_content
                                },
                                "finish_reason": "stop",
                                "index": 0
                            }
                        ],
                        "usage": {
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": completion_tokens,
                            "total_tokens": total_tokens,
                            "estimated_cost": estimated_cost
                        },
                    }
                    yield f"data: {json.dumps(final_response)}\n\n"
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                else:
                    response_content += chunk

            prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
            completion_tokens = len(response_content.split())
            total_tokens = prompt_tokens + completion_tokens
            estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)

            logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")

            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": total_tokens,
                    "estimated_cost": estimated_cost
                },
            }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e} | IP: {client_ip}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
        raise he
    except Exception as e:
        logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
        raise HTTPException(status_code=500, detail=str(e))

# Endpoint: POST /v1/tokenizer
@app.post("/v1/tokenizer", dependencies=[Depends(rate_limiter_per_ip)])
async def tokenizer(request: TokenizerRequest, req: Request):
    client_ip = req.client.host
    text = request.text
    token_count = len(text.split())
    logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
    return {"text": text, "tokens": token_count}

# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
    client_ip = req.client.host
    logger.info(f"Fetching available models from IP: {client_ip}")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Endpoint: GET /v1/models/{model}/status
@app.get("/v1/models/{model}/status", dependencies=[Depends(rate_limiter_per_ip)])
async def model_status(model: str, req: Request):
    client_ip = req.client.host
    logger.info(f"Model status requested for '{model}' from IP: {client_ip}")
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        logger.warning(f"Model not found: {model} from IP: {client_ip}")
        raise HTTPException(status_code=404, detail="Model not found")

# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
    client_ip = req.client.host
    logger.info(f"Health check requested from IP: {client_ip}")
    return {"status": "ok"}

# Endpoint: GET /v1/chat/completions (GET method)
@app.get("/v1/chat/completions")
async def chat_completions_get(req: Request):
    client_ip = req.client.host
    logger.info(f"GET request made to /v1/chat/completions from IP: {client_ip}, redirecting to 'about:blank'")
    return RedirectResponse(url='about:blank')

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    client_ip = request.client.host
    logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

# Run the application
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app.main:app", host="0.0.0.0", port=8000, reload=True)