Update main.py
Browse files
main.py
CHANGED
@@ -8,14 +8,15 @@ import logging
|
|
8 |
import asyncio
|
9 |
import time
|
10 |
from collections import defaultdict
|
11 |
-
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
|
12 |
|
13 |
from datetime import datetime
|
14 |
|
15 |
-
from aiohttp import ClientSession, ClientTimeout, ClientError
|
16 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
17 |
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
|
18 |
from pydantic import BaseModel
|
|
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(
|
@@ -29,6 +30,7 @@ logger = logging.getLogger(__name__)
|
|
29 |
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
|
30 |
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
|
31 |
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '') # Comma-separated available models
|
|
|
32 |
|
33 |
if not API_KEYS or API_KEYS == ['']:
|
34 |
logger.error("No API keys found. Please set the API_KEYS environment variable.")
|
@@ -53,10 +55,7 @@ async def cleanup_rate_limit_stores():
|
|
53 |
"""
|
54 |
while True:
|
55 |
current_time = time.time()
|
56 |
-
ips_to_delete = [
|
57 |
-
ip for ip, value in rate_limit_store.items()
|
58 |
-
if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2
|
59 |
-
]
|
60 |
for ip in ips_to_delete:
|
61 |
del rate_limit_store[ip]
|
62 |
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
@@ -99,25 +98,47 @@ class ModelNotWorkingException(Exception):
|
|
99 |
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
|
100 |
super().__init__(self.message)
|
101 |
|
102 |
-
# ImageResponse
|
103 |
class ImageResponse:
|
104 |
def __init__(self, url: str, alt: str):
|
105 |
self.url = url
|
106 |
self.alt = alt
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
url = "https://www.blackbox.ai"
|
118 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
119 |
working = True
|
120 |
-
supports_gpt_4 = True
|
121 |
supports_stream = True
|
122 |
supports_system_message = True
|
123 |
supports_message_history = True
|
@@ -127,7 +148,6 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
127 |
models = [
|
128 |
default_model,
|
129 |
'blackboxai-pro',
|
130 |
-
*image_models,
|
131 |
"llama-3.1-8b",
|
132 |
'llama-3.1-70b',
|
133 |
'llama-3.1-405b',
|
@@ -148,6 +168,8 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
148 |
'ReactAgent',
|
149 |
'XcodeAgent',
|
150 |
'AngularJSAgent',
|
|
|
|
|
151 |
]
|
152 |
|
153 |
# Filter models based on AVAILABLE_MODELS
|
@@ -156,8 +178,8 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
156 |
|
157 |
agentMode = {
|
158 |
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
|
|
|
159 |
}
|
160 |
-
|
161 |
trendingAgentMode = {
|
162 |
"blackboxai": {},
|
163 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
@@ -184,7 +206,6 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
184 |
"gpt-4o": "gpt-4o",
|
185 |
"gemini-pro": "gemini-pro",
|
186 |
'claude-sonnet-3.5': "claude-sonnet-3.5",
|
187 |
-
"niansuh": "Niansuh", # Added based on model_aliases
|
188 |
}
|
189 |
|
190 |
model_prefixes = {
|
@@ -210,10 +231,10 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
210 |
}
|
211 |
|
212 |
model_referers = {
|
213 |
-
"blackboxai": "/?model=blackboxai",
|
214 |
-
"gpt-4o": "/?model=gpt-4o",
|
215 |
-
"gemini-pro": "/?model=gemini-pro",
|
216 |
-
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
|
217 |
}
|
218 |
|
219 |
model_aliases = {
|
@@ -234,132 +255,89 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
234 |
else:
|
235 |
return cls.default_model if cls.default_model in cls.models else None
|
236 |
|
237 |
-
@staticmethod
|
238 |
-
def generate_random_string(length: int = 7) -> str:
|
239 |
-
characters = string.ascii_letters + string.digits
|
240 |
-
return ''.join(random.choices(characters, k=length))
|
241 |
-
|
242 |
-
@staticmethod
|
243 |
-
def generate_next_action() -> str:
|
244 |
-
return uuid.uuid4().hex
|
245 |
-
|
246 |
-
@staticmethod
|
247 |
-
def generate_next_router_state_tree() -> str:
|
248 |
-
router_state = [
|
249 |
-
"",
|
250 |
-
{
|
251 |
-
"children": [
|
252 |
-
"(chat)",
|
253 |
-
{
|
254 |
-
"children": [
|
255 |
-
"__PAGE__",
|
256 |
-
{}
|
257 |
-
]
|
258 |
-
}
|
259 |
-
]
|
260 |
-
},
|
261 |
-
None,
|
262 |
-
None,
|
263 |
-
True
|
264 |
-
]
|
265 |
-
return json.dumps(router_state)
|
266 |
-
|
267 |
-
@staticmethod
|
268 |
-
def clean_response(text: str) -> str:
|
269 |
-
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
|
270 |
-
cleaned_text = re.sub(pattern, '', text)
|
271 |
-
return cleaned_text
|
272 |
-
|
273 |
@classmethod
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
async def create_async_generator(
|
275 |
cls,
|
276 |
model: str,
|
277 |
messages: List[Dict[str, str]],
|
278 |
proxy: Optional[str] = None,
|
279 |
-
|
|
|
|
|
280 |
**kwargs
|
281 |
-
) -> AsyncGenerator[
|
282 |
"""
|
283 |
-
|
284 |
-
|
285 |
-
Parameters:
|
286 |
-
model (str): Model to use for generating responses.
|
287 |
-
messages (List[Dict[str, str]]): Message history.
|
288 |
-
proxy (Optional[str]): Proxy URL, if needed.
|
289 |
-
websearch (bool): Enables or disables web search mode.
|
290 |
-
**kwargs: Additional keyword arguments.
|
291 |
-
|
292 |
-
Yields:
|
293 |
-
Union[str, ImageResponse]: Segments of the generated response or ImageResponse objects.
|
294 |
"""
|
295 |
model = cls.get_model(model)
|
296 |
if model is None:
|
297 |
logger.error(f"Model {model} is not available.")
|
298 |
raise ModelNotWorkingException(model)
|
299 |
|
300 |
-
|
301 |
-
next_action = cls.generate_next_action()
|
302 |
-
next_router_state_tree = cls.generate_next_router_state_tree()
|
303 |
-
|
304 |
-
agent_mode = cls.agentMode.get(model, {})
|
305 |
-
trending_agent_mode = cls.trendingAgentMode.get(model, {})
|
306 |
-
|
307 |
-
prefix = cls.model_prefixes.get(model, "")
|
308 |
-
|
309 |
-
formatted_prompt = ""
|
310 |
-
for message in messages:
|
311 |
-
role = message.get('role', '').capitalize()
|
312 |
-
content = message.get('content', '')
|
313 |
-
if role and content:
|
314 |
-
formatted_prompt += f"{role}: {content}\n"
|
315 |
-
|
316 |
-
if prefix:
|
317 |
-
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
|
318 |
-
|
319 |
-
referer_path = cls.model_referers.get(model, f"/?model={model}")
|
320 |
-
referer_url = f"{cls.url}{referer_path}"
|
321 |
-
|
322 |
-
common_headers = {
|
323 |
-
'accept': '*/*',
|
324 |
-
'accept-language': 'en-US,en;q=0.9',
|
325 |
-
'cache-control': 'no-cache',
|
326 |
-
'origin': cls.url,
|
327 |
-
'pragma': 'no-cache',
|
328 |
-
'priority': 'u=1, i',
|
329 |
-
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
|
330 |
-
'sec-ch-ua-mobile': '?0',
|
331 |
-
'sec-ch-ua-platform': '"Linux"',
|
332 |
-
'sec-fetch-dest': 'empty',
|
333 |
-
'sec-fetch-mode': 'cors',
|
334 |
-
'sec-fetch-site': 'same-origin',
|
335 |
-
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
|
336 |
-
'AppleWebKit/537.36 (KHTML, like Gecko) '
|
337 |
-
'Chrome/129.0.0.0 Safari/537.36'
|
338 |
-
}
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
}
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
{
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
"previewToken": None,
|
356 |
"userId": None,
|
357 |
"codeModelMode": True,
|
358 |
-
"agentMode":
|
359 |
-
"trendingAgentMode":
|
360 |
"isMicMode": False,
|
361 |
"userSystemPrompt": None,
|
362 |
-
"maxTokens":
|
363 |
"playgroundTopP": 0.9,
|
364 |
"playgroundTemperature": 0.5,
|
365 |
"isChromeExt": False,
|
@@ -369,111 +347,101 @@ class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
|
|
369 |
"clickedForceWebSearch": False,
|
370 |
"visitFromDelta": False,
|
371 |
"mobileClient": False,
|
372 |
-
"
|
373 |
-
"
|
374 |
-
}
|
375 |
-
|
376 |
-
headers_chat = {
|
377 |
-
'Accept': 'text/x-component',
|
378 |
-
'Content-Type': 'text/plain;charset=UTF-8',
|
379 |
-
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
|
380 |
-
'next-action': next_action,
|
381 |
-
'next-router-state-tree': next_router_state_tree,
|
382 |
-
'next-url': '/'
|
383 |
}
|
384 |
-
headers_chat_combined = {**common_headers, **headers_chat}
|
385 |
-
|
386 |
-
data_chat = '[]'
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
try:
|
420 |
-
|
421 |
-
|
422 |
-
for
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
yield cleaned_data.strip()
|
436 |
-
except ClientResponseError as e:
|
437 |
-
error_text = f"Error {e.status}: {e.message}"
|
438 |
-
try:
|
439 |
-
error_response = await e.response.text()
|
440 |
-
cleaned_error = cls.clean_response(error_response)
|
441 |
-
error_text += f" - {cleaned_error}"
|
442 |
-
except Exception:
|
443 |
-
pass
|
444 |
-
yield error_text
|
445 |
-
except Exception as e:
|
446 |
-
yield f"Unexpected error during /api/chat request: {str(e)}"
|
447 |
|
448 |
-
|
|
|
|
|
|
|
|
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
except Exception:
|
473 |
-
pass
|
474 |
-
yield error_text
|
475 |
-
except Exception as e:
|
476 |
-
yield f"Unexpected error during /chat/{chat_id} request: {str(e)}"
|
477 |
|
478 |
# Request Models
|
479 |
class Message(BaseModel):
|
@@ -526,40 +494,6 @@ def create_response(content: str, model: str, finish_reason: Optional[str] = Non
|
|
526 |
"usage": None, # To be filled in non-streaming responses
|
527 |
}
|
528 |
|
529 |
-
# Initialize FastAPI app
|
530 |
-
app = FastAPI()
|
531 |
-
|
532 |
-
# Add the cleanup task when the app starts
|
533 |
-
@app.on_event("startup")
|
534 |
-
async def startup_event():
|
535 |
-
asyncio.create_task(cleanup_rate_limit_stores())
|
536 |
-
logger.info("Started rate limit store cleanup task.")
|
537 |
-
|
538 |
-
# Middleware to enhance security and enforce Content-Type for specific endpoints
|
539 |
-
@app.middleware("http")
|
540 |
-
async def security_middleware(request: Request, call_next):
|
541 |
-
client_ip = request.client.host
|
542 |
-
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
|
543 |
-
if request.method == "POST" and request.url.path == "/v1/chat/completions":
|
544 |
-
content_type = request.headers.get("Content-Type")
|
545 |
-
if content_type != "application/json":
|
546 |
-
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
|
547 |
-
return JSONResponse(
|
548 |
-
status_code=400,
|
549 |
-
content={
|
550 |
-
"error": {
|
551 |
-
"message": "Content-Type must be application/json",
|
552 |
-
"type": "invalid_request_error",
|
553 |
-
"param": None,
|
554 |
-
"code": None
|
555 |
-
}
|
556 |
-
},
|
557 |
-
)
|
558 |
-
response = await call_next(request)
|
559 |
-
return response
|
560 |
-
|
561 |
-
# FastAPI Endpoints
|
562 |
-
|
563 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
564 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
565 |
client_ip = req.client.host
|
@@ -578,28 +512,24 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
578 |
async_generator = Blackbox.create_async_generator(
|
579 |
model=request.model,
|
580 |
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages], # Actual message content used here
|
581 |
-
|
582 |
-
|
|
|
583 |
)
|
584 |
|
585 |
if request.stream:
|
586 |
async def generate():
|
587 |
try:
|
588 |
assistant_content = ""
|
589 |
-
prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
|
590 |
-
completion_tokens = 0
|
591 |
-
|
592 |
async for chunk in async_generator:
|
593 |
if isinstance(chunk, ImageResponse):
|
594 |
# Handle image responses if necessary
|
595 |
-
image_markdown = f"![
|
596 |
assistant_content += image_markdown
|
597 |
response_chunk = create_response(image_markdown, request.model, finish_reason=None)
|
598 |
-
yield f"data: {json.dumps(response_chunk)}\n\n"
|
599 |
else:
|
600 |
-
# Assuming 'chunk' is a string of text
|
601 |
assistant_content += chunk
|
602 |
-
|
603 |
response_chunk = {
|
604 |
"id": f"chatcmpl-{uuid.uuid4()}",
|
605 |
"object": "chat.completion.chunk",
|
@@ -614,9 +544,11 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
614 |
],
|
615 |
"usage": None, # Usage can be updated if you track tokens in real-time
|
616 |
}
|
617 |
-
|
618 |
-
|
619 |
-
# After all chunks are sent,
|
|
|
|
|
620 |
total_tokens = prompt_tokens + completion_tokens
|
621 |
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
|
622 |
|
@@ -657,7 +589,7 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
657 |
response_content = ""
|
658 |
async for chunk in async_generator:
|
659 |
if isinstance(chunk, ImageResponse):
|
660 |
-
response_content += f"![
|
661 |
else:
|
662 |
response_content += chunk
|
663 |
|
@@ -705,9 +637,18 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
705 |
async def tokenizer(request: TokenizerRequest, req: Request):
|
706 |
client_ip = req.client.host
|
707 |
text = request.text
|
708 |
-
token_count = len(text.split())
|
709 |
logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
|
710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
|
712 |
# Endpoint: GET /v1/models
|
713 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
|
|
8 |
import asyncio
|
9 |
import time
|
10 |
from collections import defaultdict
|
11 |
+
from typing import List, Dict, Any, Optional, AsyncGenerator, Union, Callable, Type, Tuple
|
12 |
|
13 |
from datetime import datetime
|
14 |
|
15 |
+
from aiohttp import ClientSession, ClientTimeout, ClientError
|
16 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
17 |
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
|
18 |
from pydantic import BaseModel
|
19 |
+
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type, RetryError
|
20 |
|
21 |
# Configure logging
|
22 |
logging.basicConfig(
|
|
|
30 |
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
|
31 |
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
|
32 |
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '') # Comma-separated available models
|
33 |
+
RETRY_ATTEMPTS = int(os.getenv('RETRY_ATTEMPTS', '5')) # Retry attempts
|
34 |
|
35 |
if not API_KEYS or API_KEYS == ['']:
|
36 |
logger.error("No API keys found. Please set the API_KEYS environment variable.")
|
|
|
55 |
"""
|
56 |
while True:
|
57 |
current_time = time.time()
|
58 |
+
ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
|
|
|
|
|
|
|
59 |
for ip in ips_to_delete:
|
60 |
del rate_limit_store[ip]
|
61 |
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
|
|
98 |
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
|
99 |
super().__init__(self.message)
|
100 |
|
101 |
+
# Mock implementations for ImageResponse and to_data_uri
|
102 |
class ImageResponse:
|
103 |
def __init__(self, url: str, alt: str):
|
104 |
self.url = url
|
105 |
self.alt = alt
|
106 |
|
107 |
+
def to_data_uri(image: Any) -> str:
|
108 |
+
return "data:image/png;base64,..." # Replace with actual base64 data
|
109 |
+
|
110 |
+
# Retry Decorator
|
111 |
+
def async_retry(
|
112 |
+
retries: int = 5,
|
113 |
+
exceptions: Tuple[Type[BaseException], ...] = (ClientError, asyncio.TimeoutError),
|
114 |
+
initial_delay: float = 1.0,
|
115 |
+
max_delay: float = 10.0,
|
116 |
+
backoff_multiplier: float = 2.0,
|
117 |
+
jitter: float = 0.1,
|
118 |
+
) -> Callable:
|
119 |
+
"""
|
120 |
+
Asynchronous retry decorator with exponential backoff and jitter.
|
121 |
+
"""
|
122 |
+
def decorator(func: Callable) -> Callable:
|
123 |
+
@retry(
|
124 |
+
stop=stop_after_attempt(retries),
|
125 |
+
wait=wait_exponential(multiplier=initial_delay, min=initial_delay, max=max_delay) + wait_exponential(multiplier=0, max=jitter),
|
126 |
+
retry=retry_if_exception_type(exceptions),
|
127 |
+
reraise=True,
|
128 |
+
)
|
129 |
+
async def wrapper(*args, **kwargs):
|
130 |
+
try:
|
131 |
+
return await func(*args, **kwargs)
|
132 |
+
except exceptions as e:
|
133 |
+
logger.warning(f"Function {func.__name__} failed with {e}. Retrying...")
|
134 |
+
raise
|
135 |
+
return wrapper
|
136 |
+
return decorator
|
137 |
+
|
138 |
+
class Blackbox:
|
139 |
url = "https://www.blackbox.ai"
|
140 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
141 |
working = True
|
|
|
142 |
supports_stream = True
|
143 |
supports_system_message = True
|
144 |
supports_message_history = True
|
|
|
148 |
models = [
|
149 |
default_model,
|
150 |
'blackboxai-pro',
|
|
|
151 |
"llama-3.1-8b",
|
152 |
'llama-3.1-70b',
|
153 |
'llama-3.1-405b',
|
|
|
168 |
'ReactAgent',
|
169 |
'XcodeAgent',
|
170 |
'AngularJSAgent',
|
171 |
+
*image_models,
|
172 |
+
'Niansuh',
|
173 |
]
|
174 |
|
175 |
# Filter models based on AVAILABLE_MODELS
|
|
|
178 |
|
179 |
agentMode = {
|
180 |
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
|
181 |
+
'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
|
182 |
}
|
|
|
183 |
trendingAgentMode = {
|
184 |
"blackboxai": {},
|
185 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
|
|
206 |
"gpt-4o": "gpt-4o",
|
207 |
"gemini-pro": "gemini-pro",
|
208 |
'claude-sonnet-3.5': "claude-sonnet-3.5",
|
|
|
209 |
}
|
210 |
|
211 |
model_prefixes = {
|
|
|
231 |
}
|
232 |
|
233 |
model_referers = {
|
234 |
+
"blackboxai": f"{url}/?model=blackboxai",
|
235 |
+
"gpt-4o": f"{url}/?model=gpt-4o",
|
236 |
+
"gemini-pro": f"{url}/?model=gemini-pro",
|
237 |
+
"claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
|
238 |
}
|
239 |
|
240 |
model_aliases = {
|
|
|
255 |
else:
|
256 |
return cls.default_model if cls.default_model in cls.models else None
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
@classmethod
|
259 |
+
@async_retry(
|
260 |
+
retries=RETRY_ATTEMPTS,
|
261 |
+
exceptions=(ClientError, asyncio.TimeoutError),
|
262 |
+
initial_delay=1.0,
|
263 |
+
max_delay=10.0,
|
264 |
+
backoff_multiplier=2.0,
|
265 |
+
jitter=0.1,
|
266 |
+
)
|
267 |
async def create_async_generator(
|
268 |
cls,
|
269 |
model: str,
|
270 |
messages: List[Dict[str, str]],
|
271 |
proxy: Optional[str] = None,
|
272 |
+
image: Any = None,
|
273 |
+
image_name: Optional[str] = None,
|
274 |
+
webSearchMode: bool = False,
|
275 |
**kwargs
|
276 |
+
) -> AsyncGenerator[Any, None]:
|
277 |
"""
|
278 |
+
Create an asynchronous generator to interact with the external API.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
"""
|
280 |
model = cls.get_model(model)
|
281 |
if model is None:
|
282 |
logger.error(f"Model {model} is not available.")
|
283 |
raise ModelNotWorkingException(model)
|
284 |
|
285 |
+
logger.info(f"Selected model: {model}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
if not cls.working or model not in cls.models:
|
288 |
+
logger.error(f"Model {model} is not working or not supported.")
|
289 |
+
raise ModelNotWorkingException(model)
|
290 |
+
|
291 |
+
headers = {
|
292 |
+
"accept": "*/*",
|
293 |
+
"accept-language": "en-US,en;q=0.9",
|
294 |
+
"cache-control": "no-cache",
|
295 |
+
"content-type": "application/json",
|
296 |
+
"origin": cls.url,
|
297 |
+
"pragma": "no-cache",
|
298 |
+
"priority": "u=1, i",
|
299 |
+
"referer": cls.model_referers.get(model, cls.url),
|
300 |
+
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
|
301 |
+
"sec-ch-ua-mobile": "?0",
|
302 |
+
"sec-ch-ua-platform": '"Linux"',
|
303 |
+
"sec-fetch-dest": "empty",
|
304 |
+
"sec-fetch-mode": "cors",
|
305 |
+
"sec-fetch-site": "same-origin",
|
306 |
+
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
|
307 |
}
|
308 |
+
|
309 |
+
if model in cls.model_prefixes:
|
310 |
+
prefix = cls.model_prefixes[model]
|
311 |
+
if not messages[0]['content'].startswith(prefix):
|
312 |
+
logger.debug(f"Adding prefix '{prefix}' to the first message.")
|
313 |
+
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
|
314 |
+
|
315 |
+
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
|
316 |
+
messages[-1]['id'] = random_id
|
317 |
+
messages[-1]['role'] = 'user'
|
318 |
+
|
319 |
+
logger.debug(f"Generated message ID: {random_id} for model: {model}")
|
320 |
+
|
321 |
+
if image is not None:
|
322 |
+
messages[-1]['data'] = {
|
323 |
+
'fileText': '',
|
324 |
+
'imageBase64': to_data_uri(image),
|
325 |
+
'title': image_name
|
326 |
+
}
|
327 |
+
messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
|
328 |
+
logger.debug("Image data added to the message.")
|
329 |
+
|
330 |
+
data = {
|
331 |
+
"messages": messages,
|
332 |
+
"id": random_id,
|
333 |
"previewToken": None,
|
334 |
"userId": None,
|
335 |
"codeModelMode": True,
|
336 |
+
"agentMode": {},
|
337 |
+
"trendingAgentMode": {},
|
338 |
"isMicMode": False,
|
339 |
"userSystemPrompt": None,
|
340 |
+
"maxTokens": 99999999,
|
341 |
"playgroundTopP": 0.9,
|
342 |
"playgroundTemperature": 0.5,
|
343 |
"isChromeExt": False,
|
|
|
347 |
"clickedForceWebSearch": False,
|
348 |
"visitFromDelta": False,
|
349 |
"mobileClient": False,
|
350 |
+
"userSelectedModel": None,
|
351 |
+
"webSearchMode": webSearchMode,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
}
|
|
|
|
|
|
|
353 |
|
354 |
+
if model in cls.agentMode:
|
355 |
+
data["agentMode"] = cls.agentMode[model]
|
356 |
+
elif model in cls.trendingAgentMode:
|
357 |
+
data["trendingAgentMode"] = cls.trendingAgentMode[model]
|
358 |
+
elif model in cls.userSelectedModel:
|
359 |
+
data["userSelectedModel"] = cls.userSelectedModel[model]
|
360 |
+
logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")
|
361 |
+
|
362 |
+
timeout = ClientTimeout(total=60) # Set an appropriate timeout
|
363 |
+
|
364 |
+
try:
|
365 |
+
async with ClientSession(headers=headers, timeout=timeout) as session:
|
366 |
+
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
|
367 |
+
response.raise_for_status()
|
368 |
+
logger.info(f"Received response with status {response.status}")
|
369 |
+
if model == 'ImageGeneration':
|
370 |
+
response_text = await response.text()
|
371 |
+
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
|
372 |
+
if url_match:
|
373 |
+
image_url = url_match.group(0)
|
374 |
+
logger.info(f"Image URL found.")
|
375 |
+
yield ImageResponse(image_url, alt=messages[-1]['content'])
|
376 |
+
else:
|
377 |
+
logger.error("Image URL not found in the response.")
|
378 |
+
raise Exception("Image URL not found in the response")
|
379 |
+
else:
|
380 |
+
full_response = ""
|
381 |
+
search_results_json = ""
|
382 |
+
try:
|
383 |
+
async for chunk, _ in response.content.iter_chunks():
|
384 |
+
if chunk:
|
385 |
+
decoded_chunk = chunk.decode(errors='ignore')
|
386 |
+
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
|
387 |
+
if decoded_chunk.strip():
|
388 |
+
if '$~~~$' in decoded_chunk:
|
389 |
+
search_results_json += decoded_chunk
|
390 |
+
else:
|
391 |
+
full_response += decoded_chunk
|
392 |
+
yield decoded_chunk
|
393 |
+
logger.info("Finished streaming response chunks.")
|
394 |
+
except Exception as e:
|
395 |
+
logger.exception("Error while iterating over response chunks.")
|
396 |
+
raise e
|
397 |
+
if data["webSearchMode"] and search_results_json:
|
398 |
+
match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
|
399 |
+
if match:
|
400 |
try:
|
401 |
+
search_results = json.loads(match.group(1))
|
402 |
+
formatted_results = "\n\n**Sources:**\n"
|
403 |
+
for i, result in enumerate(search_results[:5], 1):
|
404 |
+
formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
|
405 |
+
logger.info("Formatted search results.")
|
406 |
+
yield formatted_results
|
407 |
+
except json.JSONDecodeError as je:
|
408 |
+
logger.error("Failed to parse search results JSON.")
|
409 |
+
raise je
|
410 |
+
except RetryError as re:
|
411 |
+
logger.error(f"All retry attempts failed for {cls.api_endpoint}: {re}")
|
412 |
+
raise HTTPException(status_code=502, detail="Error communicating with the external API.")
|
413 |
+
|
414 |
+
# FastAPI app setup
|
415 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
# Add the cleanup task when the app starts
|
418 |
+
@app.on_event("startup")
|
419 |
+
async def startup_event():
|
420 |
+
asyncio.create_task(cleanup_rate_limit_stores())
|
421 |
+
logger.info("Started rate limit store cleanup task.")
|
422 |
|
423 |
+
# Middleware to enhance security and enforce Content-Type for specific endpoints
|
424 |
+
@app.middleware("http")
|
425 |
+
async def security_middleware(request: Request, call_next):
|
426 |
+
client_ip = request.client.host
|
427 |
+
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
|
428 |
+
if request.method == "POST" and request.url.path == "/v1/chat/completions":
|
429 |
+
content_type = request.headers.get("Content-Type")
|
430 |
+
if content_type != "application/json":
|
431 |
+
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
|
432 |
+
return JSONResponse(
|
433 |
+
status_code=400,
|
434 |
+
content={
|
435 |
+
"error": {
|
436 |
+
"message": "Content-Type must be application/json",
|
437 |
+
"type": "invalid_request_error",
|
438 |
+
"param": None,
|
439 |
+
"code": None
|
440 |
+
}
|
441 |
+
},
|
442 |
+
)
|
443 |
+
response = await call_next(request)
|
444 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
# Request Models
|
447 |
class Message(BaseModel):
|
|
|
494 |
"usage": None, # To be filled in non-streaming responses
|
495 |
}
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
498 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
499 |
client_ip = req.client.host
|
|
|
512 |
async_generator = Blackbox.create_async_generator(
|
513 |
model=request.model,
|
514 |
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages], # Actual message content used here
|
515 |
+
image=None,
|
516 |
+
image_name=None,
|
517 |
+
webSearchMode=request.webSearchMode
|
518 |
)
|
519 |
|
520 |
if request.stream:
|
521 |
async def generate():
|
522 |
try:
|
523 |
assistant_content = ""
|
|
|
|
|
|
|
524 |
async for chunk in async_generator:
|
525 |
if isinstance(chunk, ImageResponse):
|
526 |
# Handle image responses if necessary
|
527 |
+
image_markdown = f"\n"
|
528 |
assistant_content += image_markdown
|
529 |
response_chunk = create_response(image_markdown, request.model, finish_reason=None)
|
|
|
530 |
else:
|
|
|
531 |
assistant_content += chunk
|
532 |
+
# Yield the chunk as a partial choice
|
533 |
response_chunk = {
|
534 |
"id": f"chatcmpl-{uuid.uuid4()}",
|
535 |
"object": "chat.completion.chunk",
|
|
|
544 |
],
|
545 |
"usage": None, # Usage can be updated if you track tokens in real-time
|
546 |
}
|
547 |
+
yield f"data: {json.dumps(response_chunk)}\n\n"
|
548 |
+
|
549 |
+
# After all chunks are sent, send the final message with finish_reason
|
550 |
+
prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
|
551 |
+
completion_tokens = len(assistant_content.split())
|
552 |
total_tokens = prompt_tokens + completion_tokens
|
553 |
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
|
554 |
|
|
|
589 |
response_content = ""
|
590 |
async for chunk in async_generator:
|
591 |
if isinstance(chunk, ImageResponse):
|
592 |
+
response_content += f"\n"
|
593 |
else:
|
594 |
response_content += chunk
|
595 |
|
|
|
637 |
async def tokenizer(request: TokenizerRequest, req: Request):
|
638 |
client_ip = req.client.host
|
639 |
text = request.text
|
|
|
640 |
logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
|
641 |
+
|
642 |
+
try:
|
643 |
+
# Example integration: Assuming Blackbox has a tokenizer endpoint
|
644 |
+
result = await Blackbox.process_tokenizer_request(text)
|
645 |
+
token_count = result.get("tokens", len(text.split()))
|
646 |
+
return {"text": text, "tokens": token_count}
|
647 |
+
except HTTPException as he:
|
648 |
+
raise he
|
649 |
+
except Exception as e:
|
650 |
+
logger.exception(f"An unexpected error occurred during tokenization from IP: {client_ip}.")
|
651 |
+
raise HTTPException(status_code=500, detail=str(e))
|
652 |
|
653 |
# Endpoint: GET /v1/models
|
654 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|