Update main.py
Browse files
main.py
CHANGED
@@ -1,5 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Simple in-memory rate limiter based solely on IP addresses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
async def rate_limiter_per_ip(request: Request):
|
|
|
|
|
|
|
3 |
client_ip = request.client.host
|
4 |
current_time = time.time()
|
5 |
|
@@ -9,18 +72,43 @@ async def rate_limiter_per_ip(request: Request):
|
|
9 |
else:
|
10 |
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
11 |
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
12 |
-
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address')
|
13 |
rate_limit_store[client_ip]["count"] += 1
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class Blackbox:
|
19 |
-
label = "Blackbox AI"
|
20 |
url = "https://www.blackbox.ai"
|
21 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
22 |
working = True
|
23 |
-
supports_gpt_4 = True
|
24 |
supports_stream = True
|
25 |
supports_system_message = True
|
26 |
supports_message_history = True
|
@@ -30,7 +118,6 @@ class Blackbox:
|
|
30 |
models = [
|
31 |
default_model,
|
32 |
'blackboxai-pro',
|
33 |
-
*image_models,
|
34 |
"llama-3.1-8b",
|
35 |
'llama-3.1-70b',
|
36 |
'llama-3.1-405b',
|
@@ -51,12 +138,18 @@ class Blackbox:
|
|
51 |
'ReactAgent',
|
52 |
'XcodeAgent',
|
53 |
'AngularJSAgent',
|
|
|
|
|
54 |
]
|
55 |
|
|
|
|
|
|
|
|
|
56 |
agentMode = {
|
57 |
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
|
|
|
58 |
}
|
59 |
-
|
60 |
trendingAgentMode = {
|
61 |
"blackboxai": {},
|
62 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
@@ -104,65 +197,33 @@ class Blackbox:
|
|
104 |
'AngularJSAgent': '@AngularJS Agent',
|
105 |
'blackboxai-pro': '@BLACKBOXAI-PRO',
|
106 |
'ImageGeneration': '@Image Generation',
|
|
|
107 |
}
|
108 |
|
109 |
model_referers = {
|
110 |
-
"blackboxai": "/?model=blackboxai",
|
111 |
-
"gpt-4o": "/?model=gpt-4o",
|
112 |
-
"gemini-pro": "/?model=gemini-pro",
|
113 |
-
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
|
114 |
}
|
115 |
|
116 |
model_aliases = {
|
117 |
"gemini-flash": "gemini-1.5-flash",
|
118 |
"claude-3.5-sonnet": "claude-sonnet-3.5",
|
119 |
"flux": "ImageGeneration",
|
|
|
120 |
}
|
121 |
|
122 |
@classmethod
|
123 |
-
def get_model(cls, model: str) -> str:
|
124 |
if model in cls.models:
|
125 |
return model
|
126 |
-
elif model in cls.
|
|
|
|
|
127 |
return cls.model_aliases[model]
|
128 |
else:
|
129 |
-
return cls.default_model
|
130 |
-
|
131 |
-
@staticmethod
|
132 |
-
def generate_random_string(length: int = 7) -> str:
|
133 |
-
characters = string.ascii_letters + string.digits
|
134 |
-
return ''.join(random.choices(characters, k=length))
|
135 |
-
|
136 |
-
@staticmethod
|
137 |
-
def generate_next_action() -> str:
|
138 |
-
return uuid.uuid4().hex
|
139 |
-
|
140 |
-
@staticmethod
|
141 |
-
def generate_next_router_state_tree() -> str:
|
142 |
-
router_state = [
|
143 |
-
"",
|
144 |
-
{
|
145 |
-
"children": [
|
146 |
-
"(chat)",
|
147 |
-
{
|
148 |
-
"children": [
|
149 |
-
"__PAGE__",
|
150 |
-
{}
|
151 |
-
]
|
152 |
-
}
|
153 |
-
]
|
154 |
-
},
|
155 |
-
None,
|
156 |
-
None,
|
157 |
-
True
|
158 |
-
]
|
159 |
-
return json.dumps(router_state)
|
160 |
-
|
161 |
-
@staticmethod
|
162 |
-
def clean_response(text: str) -> str:
|
163 |
-
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
|
164 |
-
cleaned_text = re.sub(pattern, '', text)
|
165 |
-
return cleaned_text
|
166 |
|
167 |
@classmethod
|
168 |
async def create_async_generator(
|
@@ -170,77 +231,73 @@ class Blackbox:
|
|
170 |
model: str,
|
171 |
messages: List[Dict[str, str]],
|
172 |
proxy: Optional[str] = None,
|
173 |
-
|
|
|
|
|
174 |
**kwargs
|
175 |
-
) -> AsyncGenerator[
|
176 |
-
"""
|
177 |
-
Creates an asynchronous generator for streaming responses from Blackbox AI.
|
178 |
-
"""
|
179 |
model = cls.get_model(model)
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
next_action = cls.generate_next_action()
|
183 |
-
next_router_state_tree = cls.generate_next_router_state_tree()
|
184 |
-
|
185 |
-
agent_mode = cls.agentMode.get(model, {})
|
186 |
-
trending_agent_mode = cls.trendingAgentMode.get(model, {})
|
187 |
|
188 |
-
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
'cache-control': 'no-cache',
|
207 |
-
'origin': cls.url,
|
208 |
-
'pragma': 'no-cache',
|
209 |
-
'priority': 'u=1, i',
|
210 |
-
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
|
211 |
-
'sec-ch-ua-mobile': '?0',
|
212 |
-
'sec-ch-ua-platform': '"Linux"',
|
213 |
-
'sec-fetch-dest': 'empty',
|
214 |
-
'sec-fetch-mode': 'cors',
|
215 |
-
'sec-fetch-site': 'same-origin',
|
216 |
-
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
|
217 |
-
'AppleWebKit/537.36 (KHTML, like Gecko) '
|
218 |
-
'Chrome/129.0.0.0 Safari/537.36'
|
219 |
}
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
'
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
"previewToken": None,
|
237 |
"userId": None,
|
238 |
"codeModelMode": True,
|
239 |
-
"agentMode":
|
240 |
-
"trendingAgentMode":
|
241 |
"isMicMode": False,
|
242 |
"userSystemPrompt": None,
|
243 |
-
"maxTokens":
|
244 |
"playgroundTopP": 0.9,
|
245 |
"playgroundTemperature": 0.5,
|
246 |
"isChromeExt": False,
|
@@ -250,66 +307,81 @@ class Blackbox:
|
|
250 |
"clickedForceWebSearch": False,
|
251 |
"visitFromDelta": False,
|
252 |
"mobileClient": False,
|
253 |
-
"
|
254 |
-
"
|
255 |
}
|
256 |
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
try:
|
259 |
-
async with session
|
260 |
-
cls.api_endpoint,
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
|
271 |
-
if match:
|
272 |
-
image_url = match.group(1)
|
273 |
-
yield {"type": "image", "url": image_url, "alt": "Generated Image"}
|
274 |
-
else:
|
275 |
-
yield cleaned_response
|
276 |
-
else:
|
277 |
-
if websearch:
|
278 |
-
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
|
279 |
-
if match:
|
280 |
-
source_part = match.group(1).strip()
|
281 |
-
answer_part = cleaned_response[match.end():].strip()
|
282 |
-
try:
|
283 |
-
sources = json.loads(source_part)
|
284 |
-
source_formatted = "**Source:**\n"
|
285 |
-
for item in sources:
|
286 |
-
title = item.get('title', 'No Title')
|
287 |
-
link = item.get('link', '#')
|
288 |
-
position = item.get('position', '')
|
289 |
-
source_formatted += f"{position}. [{title}]({link})\n"
|
290 |
-
final_response = f"{answer_part}\n\n{source_formatted}"
|
291 |
-
except json.JSONDecodeError:
|
292 |
-
final_response = f"{answer_part}\n\nSource information is unavailable."
|
293 |
else:
|
294 |
-
|
|
|
295 |
else:
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
except Exception as e:
|
312 |
-
|
|
|
|
|
313 |
|
314 |
# FastAPI app setup
|
315 |
app = FastAPI()
|
@@ -354,13 +426,47 @@ class ChatRequest(BaseModel):
|
|
354 |
temperature: Optional[float] = 1.0
|
355 |
top_p: Optional[float] = 1.0
|
356 |
n: Optional[int] = 1
|
|
|
|
|
357 |
max_tokens: Optional[int] = None
|
358 |
presence_penalty: Optional[float] = 0.0
|
359 |
frequency_penalty: Optional[float] = 0.0
|
360 |
logit_bias: Optional[Dict[str, float]] = None
|
361 |
user: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip
|
364 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
365 |
client_ip = req.client.host
|
366 |
# Redact user messages only for logging purposes
|
@@ -375,35 +481,119 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
375 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
376 |
|
377 |
# Process the request with actual message content, but don't log it
|
378 |
-
|
379 |
model=request.model,
|
380 |
-
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
381 |
-
|
382 |
-
|
|
|
383 |
)
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
except ModelNotWorkingException as e:
|
408 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
409 |
raise HTTPException(status_code=503, detail=str(e))
|
@@ -414,6 +604,15 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
414 |
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
415 |
raise HTTPException(status_code=500, detail=str(e))
|
416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
# Endpoint: GET /v1/models
|
418 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
419 |
async def get_models(req: Request):
|
@@ -421,6 +620,20 @@ async def get_models(req: Request):
|
|
421 |
logger.info(f"Fetching available models from IP: {client_ip}")
|
422 |
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
|
423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
# Endpoint: GET /v1/health
|
425 |
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
|
426 |
async def health_check(req: Request):
|
@@ -428,6 +641,13 @@ async def health_check(req: Request):
|
|
428 |
logger.info(f"Health check requested from IP: {client_ip}")
|
429 |
return {"status": "ok"}
|
430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
# Custom exception handler to match OpenAI's error format
|
432 |
@app.exception_handler(HTTPException)
|
433 |
async def http_exception_handler(request: Request, exc: HTTPException):
|
@@ -444,3 +664,8 @@ async def http_exception_handler(request: Request, exc: HTTPException):
|
|
444 |
}
|
445 |
},
|
446 |
)
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import random
|
4 |
+
import string
|
5 |
+
import uuid
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import asyncio
|
9 |
+
import time
|
10 |
+
from collections import defaultdict
|
11 |
+
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
|
12 |
+
|
13 |
+
from datetime import datetime
|
14 |
+
|
15 |
+
from aiohttp import ClientSession, ClientTimeout, ClientError
|
16 |
+
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
17 |
+
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
|
18 |
+
from pydantic import BaseModel
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(
|
22 |
+
level=logging.INFO,
|
23 |
+
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
24 |
+
handlers=[logging.StreamHandler()]
|
25 |
+
)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
# Load environment variables
|
29 |
+
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
|
30 |
+
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
|
31 |
+
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '') # Comma-separated available models
|
32 |
+
|
33 |
+
if not API_KEYS or API_KEYS == ['']:
|
34 |
+
logger.error("No API keys found. Please set the API_KEYS environment variable.")
|
35 |
+
raise Exception("API_KEYS environment variable not set.")
|
36 |
+
|
37 |
+
# Process available models
|
38 |
+
if AVAILABLE_MODELS:
|
39 |
+
AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
|
40 |
+
else:
|
41 |
+
AVAILABLE_MODELS = [] # If empty, all models are available
|
42 |
+
|
43 |
# Simple in-memory rate limiter based solely on IP addresses
|
44 |
+
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
|
45 |
+
|
46 |
+
# Define cleanup interval and window
|
47 |
+
CLEANUP_INTERVAL = 60 # seconds
|
48 |
+
RATE_LIMIT_WINDOW = 60 # seconds
|
49 |
+
|
50 |
+
async def cleanup_rate_limit_stores():
|
51 |
+
"""
|
52 |
+
Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
|
53 |
+
"""
|
54 |
+
while True:
|
55 |
+
current_time = time.time()
|
56 |
+
ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
|
57 |
+
for ip in ips_to_delete:
|
58 |
+
del rate_limit_store[ip]
|
59 |
+
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
60 |
+
await asyncio.sleep(CLEANUP_INTERVAL)
|
61 |
+
|
62 |
async def rate_limiter_per_ip(request: Request):
|
63 |
+
"""
|
64 |
+
Rate limiter that enforces a limit based on the client's IP address.
|
65 |
+
"""
|
66 |
client_ip = request.client.host
|
67 |
current_time = time.time()
|
68 |
|
|
|
72 |
else:
|
73 |
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
74 |
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
75 |
+
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
|
76 |
rate_limit_store[client_ip]["count"] += 1
|
77 |
|
78 |
+
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
|
79 |
+
"""
|
80 |
+
Dependency to extract and validate the API key from the Authorization header.
|
81 |
+
"""
|
82 |
+
client_ip = request.client.host
|
83 |
+
if authorization is None or not authorization.startswith('Bearer '):
|
84 |
+
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
|
85 |
+
raise HTTPException(status_code=401, detail='Invalid authorization header format')
|
86 |
+
api_key = authorization[7:]
|
87 |
+
if api_key not in API_KEYS:
|
88 |
+
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
|
89 |
+
raise HTTPException(status_code=401, detail='Invalid API key')
|
90 |
+
return api_key
|
91 |
+
|
92 |
+
# Custom exception for model not working
|
93 |
+
class ModelNotWorkingException(Exception):
|
94 |
+
def __init__(self, model: str):
|
95 |
+
self.model = model
|
96 |
+
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
|
97 |
+
super().__init__(self.message)
|
98 |
+
|
99 |
+
# Mock implementations for ImageResponse and to_data_uri
|
100 |
+
class ImageResponse:
|
101 |
+
def __init__(self, url: str, alt: str):
|
102 |
+
self.url = url
|
103 |
+
self.alt = alt
|
104 |
+
|
105 |
+
def to_data_uri(image: Any) -> str:
|
106 |
+
return "data:image/png;base64,..." # Replace with actual base64 data
|
107 |
|
108 |
class Blackbox:
|
|
|
109 |
url = "https://www.blackbox.ai"
|
110 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
111 |
working = True
|
|
|
112 |
supports_stream = True
|
113 |
supports_system_message = True
|
114 |
supports_message_history = True
|
|
|
118 |
models = [
|
119 |
default_model,
|
120 |
'blackboxai-pro',
|
|
|
121 |
"llama-3.1-8b",
|
122 |
'llama-3.1-70b',
|
123 |
'llama-3.1-405b',
|
|
|
138 |
'ReactAgent',
|
139 |
'XcodeAgent',
|
140 |
'AngularJSAgent',
|
141 |
+
*image_models,
|
142 |
+
'Niansuh',
|
143 |
]
|
144 |
|
145 |
+
# Filter models based on AVAILABLE_MODELS
|
146 |
+
if AVAILABLE_MODELS:
|
147 |
+
models = [model for model in models if model in AVAILABLE_MODELS]
|
148 |
+
|
149 |
agentMode = {
|
150 |
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
|
151 |
+
'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
|
152 |
}
|
|
|
153 |
trendingAgentMode = {
|
154 |
"blackboxai": {},
|
155 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
|
|
197 |
'AngularJSAgent': '@AngularJS Agent',
|
198 |
'blackboxai-pro': '@BLACKBOXAI-PRO',
|
199 |
'ImageGeneration': '@Image Generation',
|
200 |
+
'Niansuh': '@Niansuh',
|
201 |
}
|
202 |
|
203 |
model_referers = {
|
204 |
+
"blackboxai": f"{url}/?model=blackboxai",
|
205 |
+
"gpt-4o": f"{url}/?model=gpt-4o",
|
206 |
+
"gemini-pro": f"{url}/?model=gemini-pro",
|
207 |
+
"claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
|
208 |
}
|
209 |
|
210 |
model_aliases = {
|
211 |
"gemini-flash": "gemini-1.5-flash",
|
212 |
"claude-3.5-sonnet": "claude-sonnet-3.5",
|
213 |
"flux": "ImageGeneration",
|
214 |
+
"niansuh": "Niansuh",
|
215 |
}
|
216 |
|
217 |
@classmethod
|
218 |
+
def get_model(cls, model: str) -> Optional[str]:
|
219 |
if model in cls.models:
|
220 |
return model
|
221 |
+
elif model in cls.userSelectedModel and cls.userSelectedModel[model] in cls.models:
|
222 |
+
return cls.userSelectedModel[model]
|
223 |
+
elif model in cls.model_aliases and cls.model_aliases[model] in cls.models:
|
224 |
return cls.model_aliases[model]
|
225 |
else:
|
226 |
+
return cls.default_model if cls.default_model in cls.models else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
@classmethod
|
229 |
async def create_async_generator(
|
|
|
231 |
model: str,
|
232 |
messages: List[Dict[str, str]],
|
233 |
proxy: Optional[str] = None,
|
234 |
+
image: Any = None,
|
235 |
+
image_name: Optional[str] = None,
|
236 |
+
webSearchMode: bool = False,
|
237 |
**kwargs
|
238 |
+
) -> AsyncGenerator[Any, None]:
|
|
|
|
|
|
|
239 |
model = cls.get_model(model)
|
240 |
+
if model is None:
|
241 |
+
logger.error(f"Model {model} is not available.")
|
242 |
+
raise ModelNotWorkingException(model)
|
243 |
|
244 |
+
logger.info(f"Selected model: {model}")
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
if not cls.working or model not in cls.models:
|
247 |
+
logger.error(f"Model {model} is not working or not supported.")
|
248 |
+
raise ModelNotWorkingException(model)
|
249 |
|
250 |
+
headers = {
|
251 |
+
"accept": "*/*",
|
252 |
+
"accept-language": "en-US,en;q=0.9",
|
253 |
+
"cache-control": "no-cache",
|
254 |
+
"content-type": "application/json",
|
255 |
+
"origin": cls.url,
|
256 |
+
"pragma": "no-cache",
|
257 |
+
"priority": "u=1, i",
|
258 |
+
"referer": cls.model_referers.get(model, cls.url),
|
259 |
+
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
|
260 |
+
"sec-ch-ua-mobile": "?0",
|
261 |
+
"sec-ch-ua-platform": '"Linux"',
|
262 |
+
"sec-fetch-dest": "empty",
|
263 |
+
"sec-fetch-mode": "cors",
|
264 |
+
"sec-fetch-site": "same-origin",
|
265 |
+
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
}
|
267 |
|
268 |
+
if model in cls.model_prefixes:
|
269 |
+
prefix = cls.model_prefixes[model]
|
270 |
+
if not messages[0]['content'].startswith(prefix):
|
271 |
+
logger.debug(f"Adding prefix '{prefix}' to the first message.")
|
272 |
+
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
|
273 |
+
|
274 |
+
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
|
275 |
+
messages[-1]['id'] = random_id
|
276 |
+
messages[-1]['role'] = 'user'
|
277 |
+
|
278 |
+
# Don't log the full message content for privacy
|
279 |
+
logger.debug(f"Generated message ID: {random_id} for model: {model}")
|
280 |
+
|
281 |
+
if image is not None:
|
282 |
+
messages[-1]['data'] = {
|
283 |
+
'fileText': '',
|
284 |
+
'imageBase64': to_data_uri(image),
|
285 |
+
'title': image_name
|
286 |
+
}
|
287 |
+
messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
|
288 |
+
logger.debug("Image data added to the message.")
|
289 |
+
|
290 |
+
data = {
|
291 |
+
"messages": messages,
|
292 |
+
"id": random_id,
|
293 |
"previewToken": None,
|
294 |
"userId": None,
|
295 |
"codeModelMode": True,
|
296 |
+
"agentMode": {},
|
297 |
+
"trendingAgentMode": {},
|
298 |
"isMicMode": False,
|
299 |
"userSystemPrompt": None,
|
300 |
+
"maxTokens": 99999999,
|
301 |
"playgroundTopP": 0.9,
|
302 |
"playgroundTemperature": 0.5,
|
303 |
"isChromeExt": False,
|
|
|
307 |
"clickedForceWebSearch": False,
|
308 |
"visitFromDelta": False,
|
309 |
"mobileClient": False,
|
310 |
+
"userSelectedModel": None,
|
311 |
+
"webSearchMode": webSearchMode,
|
312 |
}
|
313 |
|
314 |
+
if model in cls.agentMode:
|
315 |
+
data["agentMode"] = cls.agentMode[model]
|
316 |
+
elif model in cls.trendingAgentMode:
|
317 |
+
data["trendingAgentMode"] = cls.trendingAgentMode[model]
|
318 |
+
elif model in cls.userSelectedModel:
|
319 |
+
data["userSelectedModel"] = cls.userSelectedModel[model]
|
320 |
+
logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")
|
321 |
+
|
322 |
+
timeout = ClientTimeout(total=60) # Set an appropriate timeout
|
323 |
+
retry_attempts = 10 # Set the number of retry attempts
|
324 |
+
|
325 |
+
for attempt in range(retry_attempts):
|
326 |
try:
|
327 |
+
async with ClientSession(headers=headers, timeout=timeout) as session:
|
328 |
+
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
|
329 |
+
response.raise_for_status()
|
330 |
+
logger.info(f"Received response with status {response.status}")
|
331 |
+
if model == 'ImageGeneration':
|
332 |
+
response_text = await response.text()
|
333 |
+
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
|
334 |
+
if url_match:
|
335 |
+
image_url = url_match.group(0)
|
336 |
+
logger.info(f"Image URL found.")
|
337 |
+
yield ImageResponse(image_url, alt=messages[-1]['content'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
else:
|
339 |
+
logger.error("Image URL not found in the response.")
|
340 |
+
raise Exception("Image URL not found in the response")
|
341 |
else:
|
342 |
+
full_response = ""
|
343 |
+
search_results_json = ""
|
344 |
+
try:
|
345 |
+
async for chunk, _ in response.content.iter_chunks():
|
346 |
+
if chunk:
|
347 |
+
decoded_chunk = chunk.decode(errors='ignore')
|
348 |
+
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
|
349 |
+
if decoded_chunk.strip():
|
350 |
+
if '$~~~$' in decoded_chunk:
|
351 |
+
search_results_json += decoded_chunk
|
352 |
+
else:
|
353 |
+
full_response += decoded_chunk
|
354 |
+
yield decoded_chunk
|
355 |
+
logger.info("Finished streaming response chunks.")
|
356 |
+
except Exception as e:
|
357 |
+
logger.exception("Error while iterating over response chunks.")
|
358 |
+
raise e
|
359 |
+
if data["webSearchMode"] and search_results_json:
|
360 |
+
match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
|
361 |
+
if match:
|
362 |
+
try:
|
363 |
+
search_results = json.loads(match.group(1))
|
364 |
+
formatted_results = "\n\n**Sources:**\n"
|
365 |
+
for i, result in enumerate(search_results[:5], 1):
|
366 |
+
formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
|
367 |
+
logger.info("Formatted search results.")
|
368 |
+
yield formatted_results
|
369 |
+
except json.JSONDecodeError as je:
|
370 |
+
logger.error("Failed to parse search results JSON.")
|
371 |
+
raise je
|
372 |
+
break # Exit the retry loop if successful
|
373 |
+
except ClientError as ce:
|
374 |
+
logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
|
375 |
+
if attempt == retry_attempts - 1:
|
376 |
+
raise HTTPException(status_code=502, detail="Error communicating with the external API.")
|
377 |
+
except asyncio.TimeoutError:
|
378 |
+
logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
|
379 |
+
if attempt == retry_attempts - 1:
|
380 |
+
raise HTTPException(status_code=504, detail="External API request timed out.")
|
381 |
except Exception as e:
|
382 |
+
logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
|
383 |
+
if attempt == retry_attempts - 1:
|
384 |
+
raise HTTPException(status_code=500, detail=str(e))
|
385 |
|
386 |
# FastAPI app setup
|
387 |
app = FastAPI()
|
|
|
426 |
temperature: Optional[float] = 1.0
|
427 |
top_p: Optional[float] = 1.0
|
428 |
n: Optional[int] = 1
|
429 |
+
stream: Optional[bool] = False
|
430 |
+
stop: Optional[Union[str, List[str]]] = None
|
431 |
max_tokens: Optional[int] = None
|
432 |
presence_penalty: Optional[float] = 0.0
|
433 |
frequency_penalty: Optional[float] = 0.0
|
434 |
logit_bias: Optional[Dict[str, float]] = None
|
435 |
user: Optional[str] = None
|
436 |
+
webSearchMode: Optional[bool] = False # Custom parameter
|
437 |
+
|
438 |
+
class TokenizerRequest(BaseModel):
|
439 |
+
text: str
|
440 |
+
|
441 |
+
def calculate_estimated_cost(prompt_tokens: int, completion_tokens: int) -> float:
|
442 |
+
"""
|
443 |
+
Calculate the estimated cost based on the number of tokens.
|
444 |
+
Replace the pricing below with your actual pricing model.
|
445 |
+
"""
|
446 |
+
# Example pricing: $0.00000268 per token
|
447 |
+
cost_per_token = 0.00000268
|
448 |
+
return round((prompt_tokens + completion_tokens) * cost_per_token, 8)
|
449 |
+
|
450 |
+
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
|
451 |
+
return {
|
452 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
453 |
+
"object": "chat.completion",
|
454 |
+
"created": int(datetime.now().timestamp()),
|
455 |
+
"model": model,
|
456 |
+
"choices": [
|
457 |
+
{
|
458 |
+
"index": 0,
|
459 |
+
"message": {
|
460 |
+
"role": "assistant",
|
461 |
+
"content": content
|
462 |
+
},
|
463 |
+
"finish_reason": finish_reason
|
464 |
+
}
|
465 |
+
],
|
466 |
+
"usage": None, # To be filled in non-streaming responses
|
467 |
+
}
|
468 |
|
469 |
+
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
470 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
471 |
client_ip = req.client.host
|
472 |
# Redact user messages only for logging purposes
|
|
|
481 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
482 |
|
483 |
# Process the request with actual message content, but don't log it
|
484 |
+
async_generator = Blackbox.create_async_generator(
|
485 |
model=request.model,
|
486 |
+
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages], # Actual message content used here
|
487 |
+
image=None,
|
488 |
+
image_name=None,
|
489 |
+
webSearchMode=request.webSearchMode
|
490 |
)
|
491 |
|
492 |
+
if request.stream:
|
493 |
+
async def generate():
|
494 |
+
try:
|
495 |
+
assistant_content = ""
|
496 |
+
async for chunk in async_generator:
|
497 |
+
if isinstance(chunk, ImageResponse):
|
498 |
+
# Handle image responses if necessary
|
499 |
+
image_markdown = f"\n"
|
500 |
+
assistant_content += image_markdown
|
501 |
+
response_chunk = create_response(image_markdown, request.model, finish_reason=None)
|
502 |
+
else:
|
503 |
+
assistant_content += chunk
|
504 |
+
# Yield the chunk as a partial choice
|
505 |
+
response_chunk = {
|
506 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
507 |
+
"object": "chat.completion.chunk",
|
508 |
+
"created": int(datetime.now().timestamp()),
|
509 |
+
"model": request.model,
|
510 |
+
"choices": [
|
511 |
+
{
|
512 |
+
"index": 0,
|
513 |
+
"delta": {"content": chunk, "role": "assistant"},
|
514 |
+
"finish_reason": None,
|
515 |
+
}
|
516 |
+
],
|
517 |
+
"usage": None, # Usage can be updated if you track tokens in real-time
|
518 |
+
}
|
519 |
+
yield f"data: {json.dumps(response_chunk)}\n\n"
|
520 |
+
|
521 |
+
# After all chunks are sent, send the final message with finish_reason
|
522 |
+
prompt_tokens = sum(len(msg['content'].split()) for msg in request.messages)
|
523 |
+
completion_tokens = len(assistant_content.split())
|
524 |
+
total_tokens = prompt_tokens + completion_tokens
|
525 |
+
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
|
526 |
+
|
527 |
+
final_response = {
|
528 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
529 |
+
"object": "chat.completion",
|
530 |
+
"created": int(datetime.now().timestamp()),
|
531 |
+
"model": request.model,
|
532 |
+
"choices": [
|
533 |
+
{
|
534 |
+
"message": {
|
535 |
+
"role": "assistant",
|
536 |
+
"content": assistant_content
|
537 |
+
},
|
538 |
+
"finish_reason": "stop",
|
539 |
+
"index": 0
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"usage": {
|
543 |
+
"prompt_tokens": prompt_tokens,
|
544 |
+
"completion_tokens": completion_tokens,
|
545 |
+
"total_tokens": total_tokens,
|
546 |
+
"estimated_cost": estimated_cost
|
547 |
+
},
|
548 |
+
}
|
549 |
+
yield f"data: {json.dumps(final_response)}\n\n"
|
550 |
+
yield "data: [DONE]\n\n"
|
551 |
+
except HTTPException as he:
|
552 |
+
error_response = {"error": he.detail}
|
553 |
+
yield f"data: {json.dumps(error_response)}\n\n"
|
554 |
+
except Exception as e:
|
555 |
+
logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
|
556 |
+
error_response = {"error": str(e)}
|
557 |
+
yield f"data: {json.dumps(error_response)}\n\n"
|
558 |
+
|
559 |
+
return StreamingResponse(generate(), media_type="text/event-stream")
|
560 |
+
else:
|
561 |
+
response_content = ""
|
562 |
+
async for chunk in async_generator:
|
563 |
+
if isinstance(chunk, ImageResponse):
|
564 |
+
response_content += f"\n"
|
565 |
+
else:
|
566 |
+
response_content += chunk
|
567 |
+
|
568 |
+
prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
|
569 |
+
completion_tokens = len(response_content.split())
|
570 |
+
total_tokens = prompt_tokens + completion_tokens
|
571 |
+
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
|
572 |
+
|
573 |
+
logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")
|
574 |
+
|
575 |
+
return {
|
576 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
577 |
+
"object": "chat.completion",
|
578 |
+
"created": int(datetime.now().timestamp()),
|
579 |
+
"model": request.model,
|
580 |
+
"choices": [
|
581 |
+
{
|
582 |
+
"message": {
|
583 |
+
"role": "assistant",
|
584 |
+
"content": response_content
|
585 |
+
},
|
586 |
+
"finish_reason": "stop",
|
587 |
+
"index": 0
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"usage": {
|
591 |
+
"prompt_tokens": prompt_tokens,
|
592 |
+
"completion_tokens": completion_tokens,
|
593 |
+
"total_tokens": total_tokens,
|
594 |
+
"estimated_cost": estimated_cost
|
595 |
+
},
|
596 |
+
}
|
597 |
except ModelNotWorkingException as e:
|
598 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
599 |
raise HTTPException(status_code=503, detail=str(e))
|
|
|
604 |
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
605 |
raise HTTPException(status_code=500, detail=str(e))
|
606 |
|
607 |
+
# Endpoint: POST /v1/tokenizer
|
608 |
+
@app.post("/v1/tokenizer", dependencies=[Depends(rate_limiter_per_ip)])
|
609 |
+
async def tokenizer(request: TokenizerRequest, req: Request):
|
610 |
+
client_ip = req.client.host
|
611 |
+
text = request.text
|
612 |
+
token_count = len(text.split())
|
613 |
+
logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
|
614 |
+
return {"text": text, "tokens": token_count}
|
615 |
+
|
616 |
# Endpoint: GET /v1/models
|
617 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
618 |
async def get_models(req: Request):
|
|
|
620 |
logger.info(f"Fetching available models from IP: {client_ip}")
|
621 |
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
|
622 |
|
623 |
+
# Endpoint: GET /v1/models/{model}/status
|
624 |
+
@app.get("/v1/models/{model}/status", dependencies=[Depends(rate_limiter_per_ip)])
|
625 |
+
async def model_status(model: str, req: Request):
|
626 |
+
client_ip = req.client.host
|
627 |
+
logger.info(f"Model status requested for '{model}' from IP: {client_ip}")
|
628 |
+
if model in Blackbox.models:
|
629 |
+
return {"model": model, "status": "available"}
|
630 |
+
elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
|
631 |
+
actual_model = Blackbox.model_aliases[model]
|
632 |
+
return {"model": actual_model, "status": "available via alias"}
|
633 |
+
else:
|
634 |
+
logger.warning(f"Model not found: {model} from IP: {client_ip}")
|
635 |
+
raise HTTPException(status_code=404, detail="Model not found")
|
636 |
+
|
637 |
# Endpoint: GET /v1/health
|
638 |
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
|
639 |
async def health_check(req: Request):
|
|
|
641 |
logger.info(f"Health check requested from IP: {client_ip}")
|
642 |
return {"status": "ok"}
|
643 |
|
644 |
+
# Endpoint: GET /v1/chat/completions (GET method)
|
645 |
+
@app.get("/v1/chat/completions")
|
646 |
+
async def chat_completions_get(req: Request):
|
647 |
+
client_ip = req.client.host
|
648 |
+
logger.info(f"GET request made to /v1/chat/completions from IP: {client_ip}, redirecting to 'about:blank'")
|
649 |
+
return RedirectResponse(url='about:blank')
|
650 |
+
|
651 |
# Custom exception handler to match OpenAI's error format
|
652 |
@app.exception_handler(HTTPException)
|
653 |
async def http_exception_handler(request: Request, exc: HTTPException):
|
|
|
664 |
}
|
665 |
},
|
666 |
)
|
667 |
+
|
668 |
+
# Run the application
|
669 |
+
if __name__ == "__main__":
|
670 |
+
import uvicorn
|
671 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|