File size: 33,217 Bytes
284013e
 
db33061
 
c815e1f
284013e
 
 
 
 
 
e97905c
61526f3
284013e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a9bdf
 
 
 
45fecec
13a9bdf
 
 
 
 
 
45fecec
13a9bdf
284013e
c30da33
521a764
 
 
c30da33
13a9bdf
521a764
 
 
 
3b1505d
521a764
 
 
13a9bdf
521a764
 
 
 
 
 
 
3b1505d
 
 
 
 
 
 
 
 
 
 
 
 
521a764
 
3b1505d
 
 
 
521a764
 
 
 
 
 
 
3b1505d
 
 
 
 
 
 
 
 
 
 
 
 
521a764
 
 
 
 
 
 
 
61526f3
 
 
 
3b1505d
 
 
 
 
 
 
 
 
 
 
 
 
61526f3
3b1505d
61526f3
 
 
 
 
 
44f4452
61526f3
 
521a764
 
 
3b1505d
521a764
 
 
c30da33
521a764
 
c30da33
521a764
 
c30da33
 
 
 
 
 
 
61526f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c30da33
 
 
 
 
a1ae61d
979ad29
284013e
979ad29
 
284013e
979ad29
 
 
13a9bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979ad29
13a9bdf
979ad29
 
 
284013e
979ad29
 
 
 
13a9bdf
 
979ad29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a9bdf
 
 
 
 
 
 
 
 
 
 
 
979ad29
 
 
 
 
 
 
 
 
 
 
 
13a9bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f4452
13a9bdf
 
 
 
 
 
 
 
 
979ad29
 
44f4452
 
13a9bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, Union, AsyncGenerator

from aiohttp import ClientSession, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import JSONResponse
from pydantic import BaseModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

# Define cleanup interval and window
CLEANUP_INTERVAL = 60  # seconds
RATE_LIMIT_WINDOW = 60  # seconds

# Define the ImageResponse model (as used in the new Blackbox class)
class ImageResponseModel(BaseModel):
    images: str  # URL of the generated image
    alt: str

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Updated Blackbox Class with New Models and Functionality
class Blackbox:
    label = "Blackbox AI"
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_gpt_4 = True
    supports_stream = True  # New attribute for streaming support
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        *image_models,  # Incorporate image models
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
    ]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
    }

    model_referers = {
        "blackboxai": "/?model=blackboxai",
        "gpt-4o": "/?model=gpt-4o",
        "gemini-pro": "/?model=gemini-pro",
        "claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @staticmethod
    def generate_random_string(length: int = 7) -> str:
        characters = string.ascii_letters + string.digits
        return ''.join(random.choices(characters, k=length))

    @staticmethod
    def generate_next_action() -> str:
        return uuid.uuid4().hex

    @staticmethod
    def generate_next_router_state_tree() -> str:
        router_state = [
            "",
            {
                "children": [
                    "(chat)",
                    {
                        "children": [
                            "__PAGE__",
                            {}
                        ]
                    }
                ]
            },
            None,
            None,
            True
        ]
        return json.dumps(router_state)

    @staticmethod
    def clean_response(text: str) -> str:
        pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
        cleaned_text = re.sub(pattern, '', text)
        return cleaned_text

    @classmethod
    async def generate_response(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        websearch: bool = False,
        **kwargs
    ) -> Union[str, ImageResponseModel]:
        model = cls.get_model(model)
        chat_id = cls.generate_random_string()
        next_action = cls.generate_next_action()
        next_router_state_tree = cls.generate_next_router_state_tree()

        agent_mode = cls.agentMode.get(model, {})
        trending_agent_mode = cls.trendingAgentMode.get(model, {})

        prefix = cls.model_prefixes.get(model, "")
        
        formatted_prompt = ""
        for message in messages:
            role = message.get('role', '').capitalize()
            content = message.get('content', '')
            if role and content:
                formatted_prompt += f"{role}: {content}\n"
        
        if prefix:
            formatted_prompt = f"{prefix} {formatted_prompt}".strip()

        referer_path = cls.model_referers.get(model, f"/?model={model}")
        referer_url = f"{cls.url}{referer_path}"

        common_headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9',
            'cache-control': 'no-cache',
            'origin': cls.url,
            'pragma': 'no-cache',
            'priority': 'u=1, i',
            'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
                          'AppleWebKit/537.36 (KHTML, like Gecko) '
                          'Chrome/129.0.0.0 Safari/537.36'
        }

        headers_api_chat = {
            'Content-Type': 'application/json',
            'Referer': referer_url
        }
        headers_api_chat_combined = {**common_headers, **headers_api_chat}

        payload_api_chat = {
            "messages": [
                {
                    "id": chat_id,
                    "content": formatted_prompt,
                    "role": "user"
                }
            ],
            "id": chat_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": agent_mode,
            "trendingAgentMode": trending_agent_mode,
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 1024,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "webSearchMode": websearch,
            "userSelectedModel": cls.userSelectedModel.get(model, model)
        }

        headers_chat = {
            'Accept': 'text/x-component',
            'Content-Type': 'text/plain;charset=UTF-8',
            'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
            'next-action': next_action,
            'next-router-state-tree': next_router_state_tree,
            'next-url': '/'
        }
        headers_chat_combined = {**common_headers, **headers_chat}

        data_chat = '[]'

        async with ClientSession(headers=common_headers) as session:
            try:
                async with session.post(
                    cls.api_endpoint,
                    headers=headers_api_chat_combined,
                    json=payload_api_chat,
                    proxy=proxy
                ) as response_api_chat:
                    response_api_chat.raise_for_status()
                    text = await response_api_chat.text()
                    cleaned_response = cls.clean_response(text)

                    if model in cls.image_models:
                        match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
                        if match:
                            image_url = match.group(1)
                            image_response = ImageResponseModel(images=image_url, alt="Generated Image")
                            return image_response
                        else:
                            return cleaned_response
                    else:
                        if websearch:
                            match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
                            if match:
                                source_part = match.group(1).strip()
                                answer_part = cleaned_response[match.end():].strip()
                                try:
                                    sources = json.loads(source_part)
                                    source_formatted = "**Source:**\n"
                                    for item in sources:
                                        title = item.get('title', 'No Title')
                                        link = item.get('link', '#')
                                        position = item.get('position', '')
                                        source_formatted += f"{position}. [{title}]({link})\n"
                                    final_response = f"{answer_part}\n\n{source_formatted}"
                                except json.JSONDecodeError:
                                    final_response = f"{answer_part}\n\nSource information is unavailable."
                            else:
                                final_response = cleaned_response
                        else:
                            if '$~~~$' in cleaned_response:
                                final_response = cleaned_response.split('$~~~$')[0].strip()
                            else:
                                final_response = cleaned_response

                        return final_response
            except ClientResponseError as e:
                error_text = f"Error {e.status}: {e.message}"
                try:
                    error_response = await e.response.text()
                    cleaned_error = cls.clean_response(error_response)
                    error_text += f" - {cleaned_error}"
                except Exception:
                    pass
                return error_text
            except Exception as e:
                return f"Unexpected error during /api/chat request: {str(e)}"

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        websearch: bool = False,
        **kwargs
    ) -> AsyncGenerator[Union[str, ImageResponseModel], None]:
        """
        Creates an asynchronous generator for streaming responses from Blackbox AI.

        Parameters:
            model (str): Model to use for generating responses.
            messages (List[Dict[str, str]]): Message history.
            proxy (Optional[str]): Proxy URL, if needed.
            websearch (bool): Enables or disables web search mode.
            **kwargs: Additional keyword arguments.

        Yields:
            Union[str, ImageResponseModel]: Segments of the generated response or ImageResponse objects.
        """
        model = cls.get_model(model)
        chat_id = cls.generate_random_string()
        next_action = cls.generate_next_action()
        next_router_state_tree = cls.generate_next_router_state_tree()

        agent_mode = cls.agentMode.get(model, {})
        trending_agent_mode = cls.trendingAgentMode.get(model, {})

        prefix = cls.model_prefixes.get(model, "")
        
        formatted_prompt = ""
        for message in messages:
            role = message.get('role', '').capitalize()
            content = message.get('content', '')
            if role and content:
                formatted_prompt += f"{role}: {content}\n"
        
        if prefix:
            formatted_prompt = f"{prefix} {formatted_prompt}".strip()

        referer_path = cls.model_referers.get(model, f"/?model={model}")
        referer_url = f"{cls.url}{referer_path}"

        common_headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9',
            'cache-control': 'no-cache',
            'origin': cls.url,
            'pragma': 'no-cache',
            'priority': 'u=1, i',
            'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
                          'AppleWebKit/537.36 (KHTML, like Gecko) '
                          'Chrome/129.0.0.0 Safari/537.36'
        }

        headers_api_chat = {
            'Content-Type': 'application/json',
            'Referer': referer_url
        }
        headers_api_chat_combined = {**common_headers, **headers_api_chat}

        payload_api_chat = {
            "messages": [
                {
                    "id": chat_id,
                    "content": formatted_prompt,
                    "role": "user"
                }
            ],
            "id": chat_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": agent_mode,
            "trendingAgentMode": trending_agent_mode,
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 1024,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "webSearchMode": websearch,
            "userSelectedModel": cls.userSelectedModel.get(model, model)
        }

        headers_chat = {
            'Accept': 'text/x-component',
            'Content-Type': 'text/plain;charset=UTF-8',
            'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
            'next-action': next_action,
            'next-router-state-tree': next_router_state_tree,
            'next-url': '/'
        }
        headers_chat_combined = {**common_headers, **headers_chat}

        data_chat = '[]'

        async with ClientSession(headers=common_headers) as session:
            try:
                async with session.post(
                    cls.api_endpoint,
                    headers=headers_api_chat_combined,
                    json=payload_api_chat,
                    proxy=proxy
                ) as response_api_chat:
                    response_api_chat.raise_for_status()
                    text = await response_api_chat.text()
                    cleaned_response = cls.clean_response(text)

                    if model in cls.image_models:
                        match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
                        if match:
                            image_url = match.group(1)
                            image_response = ImageResponseModel(images=image_url, alt="Generated Image")
                            yield image_response
                        else:
                            yield cleaned_response
                    else:
                        if websearch:
                            match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
                            if match:
                                source_part = match.group(1).strip()
                                answer_part = cleaned_response[match.end():].strip()
                                try:
                                    sources = json.loads(source_part)
                                    source_formatted = "**Source:**\n"
                                    for item in sources:
                                        title = item.get('title', 'No Title')
                                        link = item.get('link', '#')
                                        position = item.get('position', '')
                                        source_formatted += f"{position}. [{title}]({link})\n"
                                    final_response = f"{answer_part}\n\n{source_formatted}"
                                except json.JSONDecodeError:
                                    final_response = f"{answer_part}\n\nSource information is unavailable."
                            else:
                                final_response = cleaned_response
                        else:
                            if '$~~~$' in cleaned_response:
                                final_response = cleaned_response.split('$~~~$')[0].strip()
                            else:
                                final_response = cleaned_response

                        yield final_response
            except ClientResponseError as e:
                error_text = f"Error {e.status}: {e.message}"
                try:
                    error_response = await e.response.text()
                    cleaned_error = cls.clean_response(error_response)
                    error_text += f" - {cleaned_error}"
                except Exception:
                    pass
                yield error_text
            except Exception as e:
                yield f"Unexpected error during /api/chat request: {str(e)}"

            chat_url = f'{cls.url}/chat/{chat_id}?model={model}'

            try:
                async with session.post(
                    chat_url,
                    headers=headers_chat_combined,
                    data=data_chat,
                    proxy=proxy
                ) as response_chat:
                    response_chat.raise_for_status()
                    pass
            except ClientResponseError as e:
                error_text = f"Error {e.status}: {e.message}"
                try:
                    error_response = await e.response.text()
                    cleaned_error = cls.clean_response(error_response)
                    error_text += f" - {cleaned_error}"
                except Exception:
                    pass
                yield error_text
            except Exception as e:
                yield f"Unexpected error during /chat/{chat_id} request: {str(e)}"

# FastAPI app setup
app = FastAPI()

# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_rate_limit_stores())
    logger.info("Started rate limit store cleanup task.")

# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    response = await call_next(request)
    return response

# Request Models
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None

# Rate Limiter Cleanup Task
async def cleanup_rate_limit_stores():
    """
    Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
    """
    while True:
        current_time = time.time()
        ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
        for ip in ips_to_delete:
            del rate_limit_store[ip]
            logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
        await asyncio.sleep(CLEANUP_INTERVAL)

# Rate Limiter Dependency
async def rate_limiter_per_ip(request: Request):
    """
    Rate limiter that enforces a limit based on the client's IP address.
    """
    client_ip = request.client.host
    current_time = time.time()

    # Initialize or update the count and timestamp
    if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
        rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
        rate_limit_store[client_ip]["count"] += 1

# API Key Dependency
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
    """
    Dependency to extract and validate the API key from the Authorization header.
    """
    client_ip = request.client.host
    if authorization is None or not authorization.startswith('Bearer '):
        logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

# Endpoint: POST /v1/chat/completions
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
            raise HTTPException(status_code=400, detail="Requested model is not available.")

        # Check if the model is an image generation model
        is_image_model = request.model in Blackbox.image_models

        # Generate response
        response_content = await Blackbox.generate_response(
            model=request.model,
            messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
            temperature=request.temperature,
            max_tokens=request.max_tokens
        )

        # If the model is for image generation, handle accordingly
        if is_image_model and isinstance(response_content, ImageResponseModel):
            logger.info(f"Completed image generation for API key: {api_key} | IP: {client_ip}")
            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "index": 0,
                        "message": {
                            "role": "assistant",
                            "content": response_content.images  # Return the image URL
                        },
                        "finish_reason": "stop"
                    }
                ],
                "usage": {
                    "prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
                    "completion_tokens": len(response_content.images.split()),
                    "total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.images.split())
                },
            }

        logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
        return {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion",
            "created": int(datetime.now().timestamp()),
            "model": request.model,
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response_content
                    },
                    "finish_reason": "stop"
                }
            ],
            "usage": {
                "prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
                "completion_tokens": len(response_content.split()),
                "total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
            },
        }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e} | IP: {client_ip}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
        raise he
    except Exception as e:
        logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
        raise HTTPException(status_code=500, detail=str(e))

# Optional: Endpoint for Streaming Responses (Requires Client Support)
# If you wish to support streaming, you can implement an endpoint that leverages the asynchronous generator.
# This requires clients to handle streaming responses appropriately.

@app.post("/v1/chat/completions/stream", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions_stream(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received streaming chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
            raise HTTPException(status_code=400, detail="Requested model is not available.")

        # Check if the model is an image generation model
        is_image_model = request.model in Blackbox.image_models

        # Create an asynchronous generator
        async_gen = Blackbox.create_async_generator(
            model=request.model,
            messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
            temperature=request.temperature,
            max_tokens=request.max_tokens
        )

        async def stream_response() -> AsyncGenerator[bytes, None]:
            async for chunk in async_gen:
                if isinstance(chunk, ImageResponseModel):
                    # For image responses, you might want to send the URL directly
                    yield json.dumps({
                        "role": "assistant",
                        "content": chunk.images
                    }).encode('utf-8') + b'\n'
                else:
                    yield json.dumps({
                        "role": "assistant",
                        "content": chunk
                    }).encode('utf-8') + b'\n'

        logger.info(f"Streaming response started for API key: {api_key} | IP: {client_ip}")
        return JSONResponse(
            content=None,  # The actual streaming is handled by the generator
            media_type='text/event-stream',
            background=stream_response()
        )
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e} | IP: {client_ip}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
        raise he
    except Exception as e:
        logger.exception(f"An unexpected error occurred while processing the streaming chat completions request from IP: {client_ip}.")
        raise HTTPException(status_code=500, detail=str(e))

# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
    client_ip = req.client.host
    logger.info(f"Fetching available models from IP: {client_ip}")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
    client_ip = req.client.host
    logger.info(f"Health check requested from IP: {client_ip}")
    return {"status": "ok"}

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    client_ip = request.client.host
    logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)