Update main.py
Browse files
main.py
CHANGED
@@ -11,7 +11,7 @@ from collections import defaultdict
|
|
11 |
from typing import List, Dict, Any, Optional, Union
|
12 |
from datetime import datetime
|
13 |
|
14 |
-
from aiohttp import ClientSession,
|
15 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
16 |
from fastapi.responses import JSONResponse
|
17 |
from pydantic import BaseModel
|
@@ -27,18 +27,11 @@ logger = logging.getLogger(__name__)
|
|
27 |
# Load environment variables
|
28 |
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
|
29 |
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
|
30 |
-
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '') # Comma-separated available models
|
31 |
|
32 |
if not API_KEYS or API_KEYS == ['']:
|
33 |
logger.error("No API keys found. Please set the API_KEYS environment variable.")
|
34 |
raise Exception("API_KEYS environment variable not set.")
|
35 |
|
36 |
-
# Process available models
|
37 |
-
if AVAILABLE_MODELS:
|
38 |
-
AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
|
39 |
-
else:
|
40 |
-
AVAILABLE_MODELS = [] # If empty, all models are available
|
41 |
-
|
42 |
# Simple in-memory rate limiter based solely on IP addresses
|
43 |
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
|
44 |
|
@@ -56,11 +49,9 @@ class Blackbox:
|
|
56 |
supports_message_history = True
|
57 |
|
58 |
default_model = 'blackboxai'
|
59 |
-
image_models = ['ImageGeneration']
|
60 |
models = [
|
61 |
default_model,
|
62 |
'blackboxai-pro',
|
63 |
-
*image_models,
|
64 |
"llama-3.1-8b",
|
65 |
'llama-3.1-70b',
|
66 |
'llama-3.1-405b',
|
@@ -68,25 +59,9 @@ class Blackbox:
|
|
68 |
'gemini-pro',
|
69 |
'gemini-1.5-flash',
|
70 |
'claude-sonnet-3.5',
|
71 |
-
'PythonAgent',
|
72 |
-
'JavaAgent',
|
73 |
-
'JavaScriptAgent',
|
74 |
-
'HTMLAgent',
|
75 |
-
'GoogleCloudAgent',
|
76 |
-
'AndroidDeveloper',
|
77 |
-
'SwiftDeveloper',
|
78 |
-
'Next.jsAgent',
|
79 |
-
'MongoDBAgent',
|
80 |
-
'PyTorchAgent',
|
81 |
-
'ReactAgent',
|
82 |
-
'XcodeAgent',
|
83 |
-
'AngularJSAgent',
|
84 |
]
|
85 |
|
86 |
-
agentMode = {
|
87 |
-
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
|
88 |
-
}
|
89 |
-
|
90 |
trendingAgentMode = {
|
91 |
"blackboxai": {},
|
92 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
@@ -94,19 +69,6 @@ class Blackbox:
|
|
94 |
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
|
95 |
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
|
96 |
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
|
97 |
-
'PythonAgent': {'mode': True, 'id': "Python Agent"},
|
98 |
-
'JavaAgent': {'mode': True, 'id': "Java Agent"},
|
99 |
-
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
|
100 |
-
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
|
101 |
-
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
|
102 |
-
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
|
103 |
-
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
|
104 |
-
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
|
105 |
-
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
|
106 |
-
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
|
107 |
-
'ReactAgent': {'mode': True, 'id': "React Agent"},
|
108 |
-
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
|
109 |
-
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
|
110 |
}
|
111 |
|
112 |
userSelectedModel = {
|
@@ -115,12 +77,23 @@ class Blackbox:
|
|
115 |
'claude-sonnet-3.5': "claude-sonnet-3.5",
|
116 |
}
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
model_aliases = {
|
119 |
-
"gpt-3.5-turbo": "blackboxai",
|
120 |
-
"gpt-4": "gpt-4o",
|
121 |
"gemini-flash": "gemini-1.5-flash",
|
122 |
"claude-3.5-sonnet": "claude-sonnet-3.5",
|
123 |
-
"flux": "ImageGeneration",
|
124 |
}
|
125 |
|
126 |
@classmethod
|
@@ -137,6 +110,31 @@ class Blackbox:
|
|
137 |
characters = string.ascii_letters + string.digits
|
138 |
return ''.join(random.choices(characters, k=length))
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
@staticmethod
|
141 |
def clean_response(text: str) -> str:
|
142 |
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
|
@@ -144,39 +142,61 @@ class Blackbox:
|
|
144 |
return cleaned_text
|
145 |
|
146 |
@classmethod
|
147 |
-
async def
|
148 |
cls,
|
149 |
model: str,
|
150 |
messages: List[Dict[str, str]],
|
|
|
151 |
**kwargs
|
152 |
) -> str:
|
153 |
-
"""
|
154 |
-
Creates a completion using the Blackbox AI API.
|
155 |
-
"""
|
156 |
model = cls.get_model(model)
|
157 |
-
if model is None:
|
158 |
-
logger.error(f"Model {model} is not available.")
|
159 |
-
raise ModelNotWorkingException(model)
|
160 |
-
|
161 |
chat_id = cls.generate_random_string()
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
|
|
163 |
formatted_prompt = ""
|
164 |
for message in messages:
|
165 |
role = message.get('role', '').capitalize()
|
166 |
content = message.get('content', '')
|
167 |
if role and content:
|
168 |
formatted_prompt += f"{role}: {content}\n"
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
'accept': '*/*',
|
173 |
'accept-language': 'en-US,en;q=0.9',
|
|
|
174 |
'origin': cls.url,
|
175 |
-
'
|
176 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
}
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
"messages": [
|
181 |
{
|
182 |
"id": chat_id,
|
@@ -188,8 +208,8 @@ class Blackbox:
|
|
188 |
"previewToken": None,
|
189 |
"userId": None,
|
190 |
"codeModelMode": True,
|
191 |
-
"agentMode":
|
192 |
-
"trendingAgentMode":
|
193 |
"isMicMode": False,
|
194 |
"userSystemPrompt": None,
|
195 |
"maxTokens": 1024,
|
@@ -206,15 +226,16 @@ class Blackbox:
|
|
206 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
207 |
}
|
208 |
|
209 |
-
async with ClientSession() as session:
|
210 |
try:
|
211 |
async with session.post(
|
212 |
cls.api_endpoint,
|
213 |
-
headers=
|
214 |
-
json=
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
218 |
cleaned_response = cls.clean_response(text)
|
219 |
return cleaned_response
|
220 |
except ClientResponseError as e:
|
@@ -225,9 +246,9 @@ class Blackbox:
|
|
225 |
error_text += f" - {cleaned_error}"
|
226 |
except Exception:
|
227 |
pass
|
228 |
-
|
229 |
except Exception as e:
|
230 |
-
|
231 |
|
232 |
# Custom exception for model not working
|
233 |
class ModelNotWorkingException(Exception):
|
@@ -261,7 +282,7 @@ async def rate_limiter_per_ip(request: Request):
|
|
261 |
else:
|
262 |
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
263 |
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
264 |
-
raise HTTPException(status_code=429, detail='Rate limit exceeded')
|
265 |
rate_limit_store[client_ip]["count"] += 1
|
266 |
|
267 |
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
|
@@ -328,7 +349,7 @@ class ChatRequest(BaseModel):
|
|
328 |
user: Optional[str] = None
|
329 |
|
330 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
331 |
-
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
332 |
client_ip = req.client.host
|
333 |
# Redact user messages only for logging purposes
|
334 |
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
|
@@ -341,10 +362,12 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
341 |
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
342 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
343 |
|
344 |
-
# Process the request with actual message content
|
345 |
-
response_content = await Blackbox.
|
346 |
model=request.model,
|
347 |
-
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
|
|
|
|
348 |
)
|
349 |
|
350 |
logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
|
@@ -355,19 +378,19 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
355 |
"model": request.model,
|
356 |
"choices": [
|
357 |
{
|
|
|
358 |
"message": {
|
359 |
"role": "assistant",
|
360 |
"content": response_content
|
361 |
},
|
362 |
-
"finish_reason": "stop"
|
363 |
-
"index": 0
|
364 |
}
|
365 |
],
|
366 |
"usage": {
|
367 |
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
368 |
"completion_tokens": len(response_content.split()),
|
369 |
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
|
370 |
-
}
|
371 |
}
|
372 |
except ModelNotWorkingException as e:
|
373 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
@@ -379,7 +402,6 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
379 |
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
380 |
raise HTTPException(status_code=500, detail=str(e))
|
381 |
|
382 |
-
|
383 |
# Endpoint: GET /v1/models
|
384 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
385 |
async def get_models(req: Request):
|
@@ -413,4 +435,4 @@ async def http_exception_handler(request: Request, exc: HTTPException):
|
|
413 |
|
414 |
if __name__ == "__main__":
|
415 |
import uvicorn
|
416 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
11 |
from typing import List, Dict, Any, Optional, Union
|
12 |
from datetime import datetime
|
13 |
|
14 |
+
from aiohttp import ClientSession, ClientResponseError
|
15 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
16 |
from fastapi.responses import JSONResponse
|
17 |
from pydantic import BaseModel
|
|
|
27 |
# Load environment variables
|
28 |
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
|
29 |
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
|
|
|
30 |
|
31 |
if not API_KEYS or API_KEYS == ['']:
|
32 |
logger.error("No API keys found. Please set the API_KEYS environment variable.")
|
33 |
raise Exception("API_KEYS environment variable not set.")
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Simple in-memory rate limiter based solely on IP addresses
|
36 |
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
|
37 |
|
|
|
49 |
supports_message_history = True
|
50 |
|
51 |
default_model = 'blackboxai'
|
|
|
52 |
models = [
|
53 |
default_model,
|
54 |
'blackboxai-pro',
|
|
|
55 |
"llama-3.1-8b",
|
56 |
'llama-3.1-70b',
|
57 |
'llama-3.1-405b',
|
|
|
59 |
'gemini-pro',
|
60 |
'gemini-1.5-flash',
|
61 |
'claude-sonnet-3.5',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
]
|
63 |
|
64 |
+
agentMode = {}
|
|
|
|
|
|
|
65 |
trendingAgentMode = {
|
66 |
"blackboxai": {},
|
67 |
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
|
|
|
69 |
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
|
70 |
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
|
71 |
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
}
|
73 |
|
74 |
userSelectedModel = {
|
|
|
77 |
'claude-sonnet-3.5': "claude-sonnet-3.5",
|
78 |
}
|
79 |
|
80 |
+
model_prefixes = {
|
81 |
+
'gpt-4o': '@GPT-4o',
|
82 |
+
'gemini-pro': '@Gemini-PRO',
|
83 |
+
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
|
84 |
+
'blackboxai-pro': '@BLACKBOXAI-PRO',
|
85 |
+
}
|
86 |
+
|
87 |
+
model_referers = {
|
88 |
+
"blackboxai": "/?model=blackboxai",
|
89 |
+
"gpt-4o": "/?model=gpt-4o",
|
90 |
+
"gemini-pro": "/?model=gemini-pro",
|
91 |
+
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
|
92 |
+
}
|
93 |
+
|
94 |
model_aliases = {
|
|
|
|
|
95 |
"gemini-flash": "gemini-1.5-flash",
|
96 |
"claude-3.5-sonnet": "claude-sonnet-3.5",
|
|
|
97 |
}
|
98 |
|
99 |
@classmethod
|
|
|
110 |
characters = string.ascii_letters + string.digits
|
111 |
return ''.join(random.choices(characters, k=length))
|
112 |
|
113 |
+
@staticmethod
|
114 |
+
def generate_next_action() -> str:
|
115 |
+
return uuid.uuid4().hex
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def generate_next_router_state_tree() -> str:
|
119 |
+
router_state = [
|
120 |
+
"",
|
121 |
+
{
|
122 |
+
"children": [
|
123 |
+
"(chat)",
|
124 |
+
{
|
125 |
+
"children": [
|
126 |
+
"__PAGE__",
|
127 |
+
{}
|
128 |
+
]
|
129 |
+
}
|
130 |
+
]
|
131 |
+
},
|
132 |
+
None,
|
133 |
+
None,
|
134 |
+
True
|
135 |
+
]
|
136 |
+
return json.dumps(router_state)
|
137 |
+
|
138 |
@staticmethod
|
139 |
def clean_response(text: str) -> str:
|
140 |
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
|
|
|
142 |
return cleaned_text
|
143 |
|
144 |
@classmethod
|
145 |
+
async def generate_response(
|
146 |
cls,
|
147 |
model: str,
|
148 |
messages: List[Dict[str, str]],
|
149 |
+
proxy: Optional[str] = None,
|
150 |
**kwargs
|
151 |
) -> str:
|
|
|
|
|
|
|
152 |
model = cls.get_model(model)
|
|
|
|
|
|
|
|
|
153 |
chat_id = cls.generate_random_string()
|
154 |
+
next_action = cls.generate_next_action()
|
155 |
+
next_router_state_tree = cls.generate_next_router_state_tree()
|
156 |
+
|
157 |
+
agent_mode = cls.agentMode.get(model, {})
|
158 |
+
trending_agent_mode = cls.trendingAgentMode.get(model, {})
|
159 |
|
160 |
+
prefix = cls.model_prefixes.get(model, "")
|
161 |
+
|
162 |
formatted_prompt = ""
|
163 |
for message in messages:
|
164 |
role = message.get('role', '').capitalize()
|
165 |
content = message.get('content', '')
|
166 |
if role and content:
|
167 |
formatted_prompt += f"{role}: {content}\n"
|
168 |
+
|
169 |
+
if prefix:
|
170 |
+
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
|
171 |
|
172 |
+
referer_path = cls.model_referers.get(model, f"/?model={model}")
|
173 |
+
referer_url = f"{cls.url}{referer_path}"
|
174 |
+
|
175 |
+
common_headers = {
|
176 |
'accept': '*/*',
|
177 |
'accept-language': 'en-US,en;q=0.9',
|
178 |
+
'cache-control': 'no-cache',
|
179 |
'origin': cls.url,
|
180 |
+
'pragma': 'no-cache',
|
181 |
+
'priority': 'u=1, i',
|
182 |
+
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
|
183 |
+
'sec-ch-ua-mobile': '?0',
|
184 |
+
'sec-ch-ua-platform': '"Linux"',
|
185 |
+
'sec-fetch-dest': 'empty',
|
186 |
+
'sec-fetch-mode': 'cors',
|
187 |
+
'sec-fetch-site': 'same-origin',
|
188 |
+
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
|
189 |
+
'AppleWebKit/537.36 (KHTML, like Gecko) '
|
190 |
+
'Chrome/129.0.0.0 Safari/537.36'
|
191 |
}
|
192 |
|
193 |
+
headers_api_chat = {
|
194 |
+
'Content-Type': 'application/json',
|
195 |
+
'Referer': referer_url
|
196 |
+
}
|
197 |
+
headers_api_chat_combined = {**common_headers, **headers_api_chat}
|
198 |
+
|
199 |
+
payload_api_chat = {
|
200 |
"messages": [
|
201 |
{
|
202 |
"id": chat_id,
|
|
|
208 |
"previewToken": None,
|
209 |
"userId": None,
|
210 |
"codeModelMode": True,
|
211 |
+
"agentMode": agent_mode,
|
212 |
+
"trendingAgentMode": trending_agent_mode,
|
213 |
"isMicMode": False,
|
214 |
"userSystemPrompt": None,
|
215 |
"maxTokens": 1024,
|
|
|
226 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
227 |
}
|
228 |
|
229 |
+
async with ClientSession(headers=common_headers) as session:
|
230 |
try:
|
231 |
async with session.post(
|
232 |
cls.api_endpoint,
|
233 |
+
headers=headers_api_chat_combined,
|
234 |
+
json=payload_api_chat,
|
235 |
+
proxy=proxy
|
236 |
+
) as response_api_chat:
|
237 |
+
response_api_chat.raise_for_status()
|
238 |
+
text = await response_api_chat.text()
|
239 |
cleaned_response = cls.clean_response(text)
|
240 |
return cleaned_response
|
241 |
except ClientResponseError as e:
|
|
|
246 |
error_text += f" - {cleaned_error}"
|
247 |
except Exception:
|
248 |
pass
|
249 |
+
return error_text
|
250 |
except Exception as e:
|
251 |
+
return f"Unexpected error during /api/chat request: {str(e)}"
|
252 |
|
253 |
# Custom exception for model not working
|
254 |
class ModelNotWorkingException(Exception):
|
|
|
282 |
else:
|
283 |
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
284 |
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
285 |
+
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
|
286 |
rate_limit_store[client_ip]["count"] += 1
|
287 |
|
288 |
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
|
|
|
349 |
user: Optional[str] = None
|
350 |
|
351 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
352 |
+
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
353 |
client_ip = req.client.host
|
354 |
# Redact user messages only for logging purposes
|
355 |
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
|
|
|
362 |
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
363 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
364 |
|
365 |
+
# Process the request with actual message content
|
366 |
+
response_content = await Blackbox.generate_response(
|
367 |
model=request.model,
|
368 |
+
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
369 |
+
temperature=request.temperature,
|
370 |
+
max_tokens=request.max_tokens
|
371 |
)
|
372 |
|
373 |
logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
|
|
|
378 |
"model": request.model,
|
379 |
"choices": [
|
380 |
{
|
381 |
+
"index": 0,
|
382 |
"message": {
|
383 |
"role": "assistant",
|
384 |
"content": response_content
|
385 |
},
|
386 |
+
"finish_reason": "stop"
|
|
|
387 |
}
|
388 |
],
|
389 |
"usage": {
|
390 |
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
391 |
"completion_tokens": len(response_content.split()),
|
392 |
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
|
393 |
+
},
|
394 |
}
|
395 |
except ModelNotWorkingException as e:
|
396 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
|
|
402 |
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
403 |
raise HTTPException(status_code=500, detail=str(e))
|
404 |
|
|
|
405 |
# Endpoint: GET /v1/models
|
406 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
407 |
async def get_models(req: Request):
|
|
|
435 |
|
436 |
if __name__ == "__main__":
|
437 |
import uvicorn
|
438 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|