Update main.py
Browse files
main.py
CHANGED
@@ -9,7 +9,6 @@ import asyncio
|
|
9 |
import time
|
10 |
from collections import defaultdict
|
11 |
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
|
12 |
-
from datetime import datetime
|
13 |
|
14 |
from aiohttp import ClientSession, ClientResponseError
|
15 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
@@ -39,29 +38,26 @@ rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
|
|
39 |
CLEANUP_INTERVAL = 60 # seconds
|
40 |
RATE_LIMIT_WINDOW = 60 # seconds
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
client_ip = request.client.host
|
47 |
-
current_time = time.time()
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address')
|
56 |
-
rate_limit_store[client_ip]["count"] += 1
|
57 |
|
|
|
58 |
class Blackbox:
|
59 |
label = "Blackbox AI"
|
60 |
url = "https://www.blackbox.ai"
|
61 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
62 |
working = True
|
63 |
supports_gpt_4 = True
|
64 |
-
supports_stream = True
|
65 |
supports_system_message = True
|
66 |
supports_message_history = True
|
67 |
|
@@ -70,7 +66,7 @@ class Blackbox:
|
|
70 |
models = [
|
71 |
default_model,
|
72 |
'blackboxai-pro',
|
73 |
-
*image_models,
|
74 |
"llama-3.1-8b",
|
75 |
'llama-3.1-70b',
|
76 |
'llama-3.1-405b',
|
@@ -212,9 +208,165 @@ class Blackbox:
|
|
212 |
proxy: Optional[str] = None,
|
213 |
websearch: bool = False,
|
214 |
**kwargs
|
215 |
-
) ->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
"""
|
217 |
-
|
218 |
|
219 |
Parameters:
|
220 |
model (str): Model to use for generating responses.
|
@@ -223,11 +375,10 @@ class Blackbox:
|
|
223 |
websearch (bool): Enables or disables web search mode.
|
224 |
**kwargs: Additional keyword arguments.
|
225 |
|
226 |
-
|
227 |
-
|
228 |
"""
|
229 |
model = cls.get_model(model)
|
230 |
-
|
231 |
chat_id = cls.generate_random_string()
|
232 |
next_action = cls.generate_next_action()
|
233 |
next_router_state_tree = cls.generate_next_router_state_tree()
|
@@ -304,6 +455,18 @@ class Blackbox:
|
|
304 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
305 |
}
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
async with ClientSession(headers=common_headers) as session:
|
308 |
try:
|
309 |
async with session.post(
|
@@ -316,30 +479,341 @@ class Blackbox:
|
|
316 |
text = await response_api_chat.text()
|
317 |
cleaned_response = cls.clean_response(text)
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
except ClientResponseError as e:
|
343 |
error_text = f"Error {e.status}: {e.message}"
|
344 |
try:
|
345 |
error_response = await e.response.text()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import time
|
10 |
from collections import defaultdict
|
11 |
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
|
|
|
12 |
|
13 |
from aiohttp import ClientSession, ClientResponseError
|
14 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
|
|
38 |
CLEANUP_INTERVAL = 60 # seconds
|
39 |
RATE_LIMIT_WINDOW = 60 # seconds
|
40 |
|
41 |
+
# Define the ImageResponse model (as used in the new Blackbox class)
|
42 |
+
class ImageResponseModel(BaseModel):
|
43 |
+
images: str # URL of the generated image
|
44 |
+
alt: str
|
|
|
|
|
45 |
|
46 |
+
# Custom exception for model not working
|
47 |
+
class ModelNotWorkingException(Exception):
|
48 |
+
def __init__(self, model: str):
|
49 |
+
self.model = model
|
50 |
+
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
|
51 |
+
super().__init__(self.message)
|
|
|
|
|
52 |
|
53 |
+
# Updated Blackbox Class with New Models and Functionality
|
54 |
class Blackbox:
|
55 |
label = "Blackbox AI"
|
56 |
url = "https://www.blackbox.ai"
|
57 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
58 |
working = True
|
59 |
supports_gpt_4 = True
|
60 |
+
supports_stream = True # New attribute for streaming support
|
61 |
supports_system_message = True
|
62 |
supports_message_history = True
|
63 |
|
|
|
66 |
models = [
|
67 |
default_model,
|
68 |
'blackboxai-pro',
|
69 |
+
*image_models, # Incorporate image models
|
70 |
"llama-3.1-8b",
|
71 |
'llama-3.1-70b',
|
72 |
'llama-3.1-405b',
|
|
|
208 |
proxy: Optional[str] = None,
|
209 |
websearch: bool = False,
|
210 |
**kwargs
|
211 |
+
) -> Union[str, ImageResponseModel]:
|
212 |
+
model = cls.get_model(model)
|
213 |
+
chat_id = cls.generate_random_string()
|
214 |
+
next_action = cls.generate_next_action()
|
215 |
+
next_router_state_tree = cls.generate_next_router_state_tree()
|
216 |
+
|
217 |
+
agent_mode = cls.agentMode.get(model, {})
|
218 |
+
trending_agent_mode = cls.trendingAgentMode.get(model, {})
|
219 |
+
|
220 |
+
prefix = cls.model_prefixes.get(model, "")
|
221 |
+
|
222 |
+
formatted_prompt = ""
|
223 |
+
for message in messages:
|
224 |
+
role = message.get('role', '').capitalize()
|
225 |
+
content = message.get('content', '')
|
226 |
+
if role and content:
|
227 |
+
formatted_prompt += f"{role}: {content}\n"
|
228 |
+
|
229 |
+
if prefix:
|
230 |
+
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
|
231 |
+
|
232 |
+
referer_path = cls.model_referers.get(model, f"/?model={model}")
|
233 |
+
referer_url = f"{cls.url}{referer_path}"
|
234 |
+
|
235 |
+
common_headers = {
|
236 |
+
'accept': '*/*',
|
237 |
+
'accept-language': 'en-US,en;q=0.9',
|
238 |
+
'cache-control': 'no-cache',
|
239 |
+
'origin': cls.url,
|
240 |
+
'pragma': 'no-cache',
|
241 |
+
'priority': 'u=1, i',
|
242 |
+
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
|
243 |
+
'sec-ch-ua-mobile': '?0',
|
244 |
+
'sec-ch-ua-platform': '"Linux"',
|
245 |
+
'sec-fetch-dest': 'empty',
|
246 |
+
'sec-fetch-mode': 'cors',
|
247 |
+
'sec-fetch-site': 'same-origin',
|
248 |
+
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
|
249 |
+
'AppleWebKit/537.36 (KHTML, like Gecko) '
|
250 |
+
'Chrome/129.0.0.0 Safari/537.36'
|
251 |
+
}
|
252 |
+
|
253 |
+
headers_api_chat = {
|
254 |
+
'Content-Type': 'application/json',
|
255 |
+
'Referer': referer_url
|
256 |
+
}
|
257 |
+
headers_api_chat_combined = {**common_headers, **headers_api_chat}
|
258 |
+
|
259 |
+
payload_api_chat = {
|
260 |
+
"messages": [
|
261 |
+
{
|
262 |
+
"id": chat_id,
|
263 |
+
"content": formatted_prompt,
|
264 |
+
"role": "user"
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"id": chat_id,
|
268 |
+
"previewToken": None,
|
269 |
+
"userId": None,
|
270 |
+
"codeModelMode": True,
|
271 |
+
"agentMode": agent_mode,
|
272 |
+
"trendingAgentMode": trending_agent_mode,
|
273 |
+
"isMicMode": False,
|
274 |
+
"userSystemPrompt": None,
|
275 |
+
"maxTokens": 1024,
|
276 |
+
"playgroundTopP": 0.9,
|
277 |
+
"playgroundTemperature": 0.5,
|
278 |
+
"isChromeExt": False,
|
279 |
+
"githubToken": None,
|
280 |
+
"clickedAnswer2": False,
|
281 |
+
"clickedAnswer3": False,
|
282 |
+
"clickedForceWebSearch": False,
|
283 |
+
"visitFromDelta": False,
|
284 |
+
"mobileClient": False,
|
285 |
+
"webSearchMode": websearch,
|
286 |
+
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
287 |
+
}
|
288 |
+
|
289 |
+
headers_chat = {
|
290 |
+
'Accept': 'text/x-component',
|
291 |
+
'Content-Type': 'text/plain;charset=UTF-8',
|
292 |
+
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
|
293 |
+
'next-action': next_action,
|
294 |
+
'next-router-state-tree': next_router_state_tree,
|
295 |
+
'next-url': '/'
|
296 |
+
}
|
297 |
+
headers_chat_combined = {**common_headers, **headers_chat}
|
298 |
+
|
299 |
+
data_chat = '[]'
|
300 |
+
|
301 |
+
async with ClientSession(headers=common_headers) as session:
|
302 |
+
try:
|
303 |
+
async with session.post(
|
304 |
+
cls.api_endpoint,
|
305 |
+
headers=headers_api_chat_combined,
|
306 |
+
json=payload_api_chat,
|
307 |
+
proxy=proxy
|
308 |
+
) as response_api_chat:
|
309 |
+
response_api_chat.raise_for_status()
|
310 |
+
text = await response_api_chat.text()
|
311 |
+
cleaned_response = cls.clean_response(text)
|
312 |
+
|
313 |
+
if model in cls.image_models:
|
314 |
+
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
|
315 |
+
if match:
|
316 |
+
image_url = match.group(1)
|
317 |
+
image_response = ImageResponseModel(images=image_url, alt="Generated Image")
|
318 |
+
return image_response
|
319 |
+
else:
|
320 |
+
return cleaned_response
|
321 |
+
else:
|
322 |
+
if websearch:
|
323 |
+
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
|
324 |
+
if match:
|
325 |
+
source_part = match.group(1).strip()
|
326 |
+
answer_part = cleaned_response[match.end():].strip()
|
327 |
+
try:
|
328 |
+
sources = json.loads(source_part)
|
329 |
+
source_formatted = "**Source:**\n"
|
330 |
+
for item in sources:
|
331 |
+
title = item.get('title', 'No Title')
|
332 |
+
link = item.get('link', '#')
|
333 |
+
position = item.get('position', '')
|
334 |
+
source_formatted += f"{position}. [{title}]({link})\n"
|
335 |
+
final_response = f"{answer_part}\n\n{source_formatted}"
|
336 |
+
except json.JSONDecodeError:
|
337 |
+
final_response = f"{answer_part}\n\nSource information is unavailable."
|
338 |
+
else:
|
339 |
+
final_response = cleaned_response
|
340 |
+
else:
|
341 |
+
if '$~~~$' in cleaned_response:
|
342 |
+
final_response = cleaned_response.split('$~~~$')[0].strip()
|
343 |
+
else:
|
344 |
+
final_response = cleaned_response
|
345 |
+
|
346 |
+
return final_response
|
347 |
+
except ClientResponseError as e:
|
348 |
+
error_text = f"Error {e.status}: {e.message}"
|
349 |
+
try:
|
350 |
+
error_response = await e.response.text()
|
351 |
+
cleaned_error = cls.clean_response(error_response)
|
352 |
+
error_text += f" - {cleaned_error}"
|
353 |
+
except Exception:
|
354 |
+
pass
|
355 |
+
return error_text
|
356 |
+
except Exception as e:
|
357 |
+
return f"Unexpected error during /api/chat request: {str(e)}"
|
358 |
+
|
359 |
+
@classmethod
|
360 |
+
async def create_async_generator(
|
361 |
+
cls,
|
362 |
+
model: str,
|
363 |
+
messages: List[Dict[str, str]],
|
364 |
+
proxy: Optional[str] = None,
|
365 |
+
websearch: bool = False,
|
366 |
+
**kwargs
|
367 |
+
) -> AsyncGenerator[Union[str, ImageResponseModel], None]:
|
368 |
"""
|
369 |
+
Creates an asynchronous generator for streaming responses from Blackbox AI.
|
370 |
|
371 |
Parameters:
|
372 |
model (str): Model to use for generating responses.
|
|
|
375 |
websearch (bool): Enables or disables web search mode.
|
376 |
**kwargs: Additional keyword arguments.
|
377 |
|
378 |
+
Yields:
|
379 |
+
Union[str, ImageResponseModel]: Segments of the generated response or ImageResponse objects.
|
380 |
"""
|
381 |
model = cls.get_model(model)
|
|
|
382 |
chat_id = cls.generate_random_string()
|
383 |
next_action = cls.generate_next_action()
|
384 |
next_router_state_tree = cls.generate_next_router_state_tree()
|
|
|
455 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
456 |
}
|
457 |
|
458 |
+
headers_chat = {
|
459 |
+
'Accept': 'text/x-component',
|
460 |
+
'Content-Type': 'text/plain;charset=UTF-8',
|
461 |
+
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
|
462 |
+
'next-action': next_action,
|
463 |
+
'next-router-state-tree': next_router_state_tree,
|
464 |
+
'next-url': '/'
|
465 |
+
}
|
466 |
+
headers_chat_combined = {**common_headers, **headers_chat}
|
467 |
+
|
468 |
+
data_chat = '[]'
|
469 |
+
|
470 |
async with ClientSession(headers=common_headers) as session:
|
471 |
try:
|
472 |
async with session.post(
|
|
|
479 |
text = await response_api_chat.text()
|
480 |
cleaned_response = cls.clean_response(text)
|
481 |
|
482 |
+
if model in cls.image_models:
|
483 |
+
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
|
484 |
+
if match:
|
485 |
+
image_url = match.group(1)
|
486 |
+
image_response = ImageResponseModel(images=image_url, alt="Generated Image")
|
487 |
+
yield image_response
|
488 |
+
else:
|
489 |
+
yield cleaned_response
|
490 |
+
else:
|
491 |
+
if websearch:
|
492 |
+
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
|
493 |
+
if match:
|
494 |
+
source_part = match.group(1).strip()
|
495 |
+
answer_part = cleaned_response[match.end():].strip()
|
496 |
+
try:
|
497 |
+
sources = json.loads(source_part)
|
498 |
+
source_formatted = "**Source:**\n"
|
499 |
+
for item in sources:
|
500 |
+
title = item.get('title', 'No Title')
|
501 |
+
link = item.get('link', '#')
|
502 |
+
position = item.get('position', '')
|
503 |
+
source_formatted += f"{position}. [{title}]({link})\n"
|
504 |
+
final_response = f"{answer_part}\n\n{source_formatted}"
|
505 |
+
except json.JSONDecodeError:
|
506 |
+
final_response = f"{answer_part}\n\nSource information is unavailable."
|
507 |
+
else:
|
508 |
+
final_response = cleaned_response
|
509 |
+
else:
|
510 |
+
if '$~~~$' in cleaned_response:
|
511 |
+
final_response = cleaned_response.split('$~~~$')[0].strip()
|
512 |
+
else:
|
513 |
+
final_response = cleaned_response
|
514 |
+
|
515 |
+
yield final_response
|
516 |
+
except ClientResponseError as e:
|
517 |
+
error_text = f"Error {e.status}: {e.message}"
|
518 |
+
try:
|
519 |
+
error_response = await e.response.text()
|
520 |
+
cleaned_error = cls.clean_response(error_response)
|
521 |
+
error_text += f" - {cleaned_error}"
|
522 |
+
except Exception:
|
523 |
+
pass
|
524 |
+
yield error_text
|
525 |
+
except Exception as e:
|
526 |
+
yield f"Unexpected error during /api/chat request: {str(e)}"
|
527 |
+
|
528 |
+
chat_url = f'{cls.url}/chat/{chat_id}?model={model}'
|
529 |
|
530 |
+
try:
|
531 |
+
async with session.post(
|
532 |
+
chat_url,
|
533 |
+
headers=headers_chat_combined,
|
534 |
+
data=data_chat,
|
535 |
+
proxy=proxy
|
536 |
+
) as response_chat:
|
537 |
+
response_chat.raise_for_status()
|
538 |
+
pass
|
539 |
except ClientResponseError as e:
|
540 |
error_text = f"Error {e.status}: {e.message}"
|
541 |
try:
|
542 |
error_response = await e.response.text()
|
543 |
+
cleaned_error = cls.clean_response(error_response)
|
544 |
+
error_text += f" - {cleaned_error}"
|
545 |
+
except Exception:
|
546 |
+
pass
|
547 |
+
yield error_text
|
548 |
+
except Exception as e:
|
549 |
+
yield f"Unexpected error during /chat/{chat_id} request: {str(e)}"
|
550 |
+
|
551 |
+
# FastAPI app setup
|
552 |
+
app = FastAPI()
|
553 |
+
|
554 |
+
# Add the cleanup task when the app starts
|
555 |
+
@app.on_event("startup")
|
556 |
+
async def startup_event():
|
557 |
+
asyncio.create_task(cleanup_rate_limit_stores())
|
558 |
+
logger.info("Started rate limit store cleanup task.")
|
559 |
+
|
560 |
+
# Middleware to enhance security and enforce Content-Type for specific endpoints
|
561 |
+
@app.middleware("http")
|
562 |
+
async def security_middleware(request: Request, call_next):
|
563 |
+
client_ip = request.client.host
|
564 |
+
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
|
565 |
+
if request.method == "POST" and request.url.path == "/v1/chat/completions":
|
566 |
+
content_type = request.headers.get("Content-Type")
|
567 |
+
if content_type != "application/json":
|
568 |
+
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
|
569 |
+
return JSONResponse(
|
570 |
+
status_code=400,
|
571 |
+
content={
|
572 |
+
"error": {
|
573 |
+
"message": "Content-Type must be application/json",
|
574 |
+
"type": "invalid_request_error",
|
575 |
+
"param": None,
|
576 |
+
"code": None
|
577 |
+
}
|
578 |
+
},
|
579 |
+
)
|
580 |
+
response = await call_next(request)
|
581 |
+
return response
|
582 |
+
|
583 |
+
# Request Models
|
584 |
+
class Message(BaseModel):
|
585 |
+
role: str
|
586 |
+
content: str
|
587 |
+
|
588 |
+
class ChatRequest(BaseModel):
|
589 |
+
model: str
|
590 |
+
messages: List[Message]
|
591 |
+
temperature: Optional[float] = 1.0
|
592 |
+
top_p: Optional[float] = 1.0
|
593 |
+
n: Optional[int] = 1
|
594 |
+
max_tokens: Optional[int] = None
|
595 |
+
presence_penalty: Optional[float] = 0.0
|
596 |
+
frequency_penalty: Optional[float] = 0.0
|
597 |
+
logit_bias: Optional[Dict[str, float]] = None
|
598 |
+
user: Optional[str] = None
|
599 |
+
|
600 |
+
# Rate Limiter Cleanup Task
|
601 |
+
async def cleanup_rate_limit_stores():
|
602 |
+
"""
|
603 |
+
Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
|
604 |
+
"""
|
605 |
+
while True:
|
606 |
+
current_time = time.time()
|
607 |
+
ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
|
608 |
+
for ip in ips_to_delete:
|
609 |
+
del rate_limit_store[ip]
|
610 |
+
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
611 |
+
await asyncio.sleep(CLEANUP_INTERVAL)
|
612 |
+
|
613 |
+
# Rate Limiter Dependency
|
614 |
+
async def rate_limiter_per_ip(request: Request):
|
615 |
+
"""
|
616 |
+
Rate limiter that enforces a limit based on the client's IP address.
|
617 |
+
"""
|
618 |
+
client_ip = request.client.host
|
619 |
+
current_time = time.time()
|
620 |
+
|
621 |
+
# Initialize or update the count and timestamp
|
622 |
+
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
|
623 |
+
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
|
624 |
+
else:
|
625 |
+
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
626 |
+
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
627 |
+
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
|
628 |
+
rate_limit_store[client_ip]["count"] += 1
|
629 |
+
|
630 |
+
# API Key Dependency
|
631 |
+
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
|
632 |
+
"""
|
633 |
+
Dependency to extract and validate the API key from the Authorization header.
|
634 |
+
"""
|
635 |
+
client_ip = request.client.host
|
636 |
+
if authorization is None or not authorization.startswith('Bearer '):
|
637 |
+
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
|
638 |
+
raise HTTPException(status_code=401, detail='Invalid authorization header format')
|
639 |
+
api_key = authorization[7:]
|
640 |
+
if api_key not in API_KEYS:
|
641 |
+
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
|
642 |
+
raise HTTPException(status_code=401, detail='Invalid API key')
|
643 |
+
return api_key
|
644 |
+
|
645 |
+
# Endpoint: POST /v1/chat/completions
|
646 |
+
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
647 |
+
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
648 |
+
client_ip = req.client.host
|
649 |
+
# Redact user messages only for logging purposes
|
650 |
+
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
|
651 |
+
|
652 |
+
logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
|
653 |
+
|
654 |
+
try:
|
655 |
+
# Validate that the requested model is available
|
656 |
+
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
|
657 |
+
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
658 |
+
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
659 |
+
|
660 |
+
# Check if the model is an image generation model
|
661 |
+
is_image_model = request.model in Blackbox.image_models
|
662 |
+
|
663 |
+
# Generate response
|
664 |
+
response_content = await Blackbox.generate_response(
|
665 |
+
model=request.model,
|
666 |
+
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
667 |
+
temperature=request.temperature,
|
668 |
+
max_tokens=request.max_tokens
|
669 |
+
)
|
670 |
+
|
671 |
+
# If the model is for image generation, handle accordingly
|
672 |
+
if is_image_model and isinstance(response_content, ImageResponseModel):
|
673 |
+
logger.info(f"Completed image generation for API key: {api_key} | IP: {client_ip}")
|
674 |
+
return {
|
675 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
676 |
+
"object": "chat.completion",
|
677 |
+
"created": int(datetime.now().timestamp()),
|
678 |
+
"model": request.model,
|
679 |
+
"choices": [
|
680 |
+
{
|
681 |
+
"index": 0,
|
682 |
+
"message": {
|
683 |
+
"role": "assistant",
|
684 |
+
"content": response_content.images # Return the image URL
|
685 |
+
},
|
686 |
+
"finish_reason": "stop"
|
687 |
+
}
|
688 |
+
],
|
689 |
+
"usage": {
|
690 |
+
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
691 |
+
"completion_tokens": len(response_content.images.split()),
|
692 |
+
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.images.split())
|
693 |
+
},
|
694 |
+
}
|
695 |
+
|
696 |
+
logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
|
697 |
+
return {
|
698 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
699 |
+
"object": "chat.completion",
|
700 |
+
"created": int(datetime.now().timestamp()),
|
701 |
+
"model": request.model,
|
702 |
+
"choices": [
|
703 |
+
{
|
704 |
+
"index": 0,
|
705 |
+
"message": {
|
706 |
+
"role": "assistant",
|
707 |
+
"content": response_content
|
708 |
+
},
|
709 |
+
"finish_reason": "stop"
|
710 |
+
}
|
711 |
+
],
|
712 |
+
"usage": {
|
713 |
+
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
714 |
+
"completion_tokens": len(response_content.split()),
|
715 |
+
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
|
716 |
+
},
|
717 |
+
}
|
718 |
+
except ModelNotWorkingException as e:
|
719 |
+
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
720 |
+
raise HTTPException(status_code=503, detail=str(e))
|
721 |
+
except HTTPException as he:
|
722 |
+
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
|
723 |
+
raise he
|
724 |
+
except Exception as e:
|
725 |
+
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
726 |
+
raise HTTPException(status_code=500, detail=str(e))
|
727 |
+
|
728 |
+
# Optional: Endpoint for Streaming Responses (Requires Client Support)
|
729 |
+
# If you wish to support streaming, you can implement an endpoint that leverages the asynchronous generator.
|
730 |
+
# This requires clients to handle streaming responses appropriately.
|
731 |
+
|
732 |
+
@app.post("/v1/chat/completions/stream", dependencies=[Depends(rate_limiter_per_ip)])
|
733 |
+
async def chat_completions_stream(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
734 |
+
client_ip = req.client.host
|
735 |
+
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
|
736 |
+
|
737 |
+
logger.info(f"Received streaming chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
|
738 |
+
|
739 |
+
try:
|
740 |
+
# Validate that the requested model is available
|
741 |
+
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
|
742 |
+
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
743 |
+
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
744 |
+
|
745 |
+
# Check if the model is an image generation model
|
746 |
+
is_image_model = request.model in Blackbox.image_models
|
747 |
+
|
748 |
+
# Create an asynchronous generator
|
749 |
+
async_gen = Blackbox.create_async_generator(
|
750 |
+
model=request.model,
|
751 |
+
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
752 |
+
temperature=request.temperature,
|
753 |
+
max_tokens=request.max_tokens
|
754 |
+
)
|
755 |
+
|
756 |
+
async def stream_response() -> AsyncGenerator[bytes, None]:
|
757 |
+
async for chunk in async_gen:
|
758 |
+
if isinstance(chunk, ImageResponseModel):
|
759 |
+
# For image responses, you might want to send the URL directly
|
760 |
+
yield json.dumps({
|
761 |
+
"role": "assistant",
|
762 |
+
"content": chunk.images
|
763 |
+
}).encode('utf-8') + b'\n'
|
764 |
+
else:
|
765 |
+
yield json.dumps({
|
766 |
+
"role": "assistant",
|
767 |
+
"content": chunk
|
768 |
+
}).encode('utf-8') + b'\n'
|
769 |
+
|
770 |
+
logger.info(f"Streaming response started for API key: {api_key} | IP: {client_ip}")
|
771 |
+
return JSONResponse(
|
772 |
+
content=None, # The actual streaming is handled by the generator
|
773 |
+
media_type='text/event-stream',
|
774 |
+
background=stream_response()
|
775 |
+
)
|
776 |
+
except ModelNotWorkingException as e:
|
777 |
+
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
778 |
+
raise HTTPException(status_code=503, detail=str(e))
|
779 |
+
except HTTPException as he:
|
780 |
+
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
|
781 |
+
raise he
|
782 |
+
except Exception as e:
|
783 |
+
logger.exception(f"An unexpected error occurred while processing the streaming chat completions request from IP: {client_ip}.")
|
784 |
+
raise HTTPException(status_code=500, detail=str(e))
|
785 |
+
|
786 |
+
# Endpoint: GET /v1/models
|
787 |
+
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
788 |
+
async def get_models(req: Request):
|
789 |
+
client_ip = req.client.host
|
790 |
+
logger.info(f"Fetching available models from IP: {client_ip}")
|
791 |
+
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
|
792 |
+
|
793 |
+
# Endpoint: GET /v1/health
|
794 |
+
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
|
795 |
+
async def health_check(req: Request):
|
796 |
+
client_ip = req.client.host
|
797 |
+
logger.info(f"Health check requested from IP: {client_ip}")
|
798 |
+
return {"status": "ok"}
|
799 |
+
|
800 |
+
# Custom exception handler to match OpenAI's error format
|
801 |
+
@app.exception_handler(HTTPException)
|
802 |
+
async def http_exception_handler(request: Request, exc: HTTPException):
|
803 |
+
client_ip = request.client.host
|
804 |
+
logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
|
805 |
+
return JSONResponse(
|
806 |
+
status_code=exc.status_code,
|
807 |
+
content={
|
808 |
+
"error": {
|
809 |
+
"message": exc.detail,
|
810 |
+
"type": "invalid_request_error",
|
811 |
+
"param": None,
|
812 |
+
"code": None
|
813 |
+
}
|
814 |
+
},
|
815 |
+
)
|
816 |
+
|
817 |
+
if __name__ == "__main__":
|
818 |
+
import uvicorn
|
819 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|