mohit-mahavar's picture
Added template images
185b582
from torch import nn
import numpy as np
from PIL import Image
import gradio as gr
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
def resize_image(image, new_size, sdxl_resize=None):
"""
Resizes the given image while maintaining its aspect ratio.
Args:
image (PIL.Image): The image to be resized.
new_size (int): The new size (width or height) to resize the image to.
sdxl_resize (bool, optional): Flag indicating whether to resize based on \
the larger dimension. Default is None.
Returns:
PIL.Image: The resized image.
"""
original_width, original_height = image.size
if sdxl_resize:
value = max(original_height, original_width)
else:
value = min(original_height, original_width)
# Determine which side to fix based on minimum width or height
if value == original_height:
aspect_ratio = original_width / original_height
new_height = new_size
new_width = int(new_height * aspect_ratio)
else:
aspect_ratio = original_height / original_width
new_width = new_size
new_height = int(new_width * aspect_ratio)
resized_image = image.resize((new_width, new_height))
# Ensure that both dimensions are multiples of 64
w, h = resized_image.size
w, h = map(lambda x: x - x % 64, (w, h))
resized_image = resized_image.resize((w, h))
return resized_image
def run(img):
extractor = AutoFeatureExtractor.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
model = SegformerForSemanticSegmentation.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
if min(img.size) >= 768:
img = resize_image(img, 768)
elif max(img.size) >= 1024:
img = resize_image(img, 1024, sdxl_resize=True)
elif min(img.size) >= 512:
img = resize_image(img, 512)
elif max(img.size) >= 768:
img = resize_image(img, 768, sdxl_resize=True)
elif max(img.size) >= 512:
img = resize_image(img, 512, sdxl_resize=True)
pixel_values = extractor(img, return_tensors="pt").pixel_values.to("cpu")
outputs = model(pixel_values)
logits = outputs.logits
logits = nn.functional.interpolate(outputs.logits.detach().cpu(),
size=img.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
# Second, apply argmax on the class dimension
seg = logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
# Show image + mask
img = np.array(img) * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
img = Image.fromarray(img)
return img
# Create a Gradio interface
iface = gr.Interface(
fn=run,
inputs=gr.Image(label="Input image", type="pil"),
examples=["1.jpg" , "2.jpg", "3.jpg" , "4.jpg", "5.jpg" , "6.jpg"],
outputs=gr.Image(label="Output image with predicted instance Masks", type="pil"),
title="Image Segmentation with Segments-Sidewalk-SegFormer-B0",
description="Upload an image, and this app will perform image segmentation and display the result",
)
# Launch the app
iface.launch(debug=True)