mohit-mahavar commited on
Commit
185b582
·
1 Parent(s): 49f4b80

Added template images

Browse files
Files changed (8) hide show
  1. 1.jpg +0 -0
  2. 2.jpg +0 -0
  3. 3.jpg +0 -0
  4. 4.jpg +0 -0
  5. 5.jpg +0 -0
  6. 6.jpg +0 -0
  7. app.py +135 -0
  8. requirements.txt +4 -0
1.jpg ADDED
2.jpg ADDED
3.jpg ADDED
4.jpg ADDED
5.jpg ADDED
6.jpg ADDED
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ import numpy as np
3
+ from PIL import Image
4
+ import gradio as gr
5
+ from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
6
+
7
+ def ade_palette():
8
+ """ADE20K palette that maps each class to RGB values."""
9
+ return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
10
+ [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
11
+ [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
12
+ [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
13
+ [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
14
+ [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
15
+ [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
16
+ [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
17
+ [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
18
+ [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
19
+ [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
20
+ [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
21
+ [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
22
+ [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
23
+ [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
24
+ [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
25
+ [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
26
+ [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
27
+ [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
28
+ [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
29
+ [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
30
+ [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
31
+ [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
32
+ [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
33
+ [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
34
+ [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
35
+ [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
36
+ [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
37
+ [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
38
+ [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
39
+ [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
40
+ [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
41
+ [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
42
+ [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
43
+ [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
44
+ [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
45
+ [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
46
+ [102, 255, 0], [92, 0, 255]]
47
+
48
+ def resize_image(image, new_size, sdxl_resize=None):
49
+ """
50
+ Resizes the given image while maintaining its aspect ratio.
51
+
52
+ Args:
53
+ image (PIL.Image): The image to be resized.
54
+ new_size (int): The new size (width or height) to resize the image to.
55
+ sdxl_resize (bool, optional): Flag indicating whether to resize based on \
56
+ the larger dimension. Default is None.
57
+
58
+ Returns:
59
+ PIL.Image: The resized image.
60
+ """
61
+ original_width, original_height = image.size
62
+
63
+ if sdxl_resize:
64
+ value = max(original_height, original_width)
65
+ else:
66
+ value = min(original_height, original_width)
67
+
68
+ # Determine which side to fix based on minimum width or height
69
+ if value == original_height:
70
+ aspect_ratio = original_width / original_height
71
+ new_height = new_size
72
+ new_width = int(new_height * aspect_ratio)
73
+ else:
74
+ aspect_ratio = original_height / original_width
75
+ new_width = new_size
76
+ new_height = int(new_width * aspect_ratio)
77
+
78
+ resized_image = image.resize((new_width, new_height))
79
+
80
+ # Ensure that both dimensions are multiples of 64
81
+ w, h = resized_image.size
82
+ w, h = map(lambda x: x - x % 64, (w, h))
83
+ resized_image = resized_image.resize((w, h))
84
+
85
+ return resized_image
86
+
87
+
88
+ def run(img):
89
+ extractor = AutoFeatureExtractor.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
90
+ model = SegformerForSemanticSegmentation.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
91
+
92
+ if min(img.size) >= 768:
93
+ img = resize_image(img, 768)
94
+ elif max(img.size) >= 1024:
95
+ img = resize_image(img, 1024, sdxl_resize=True)
96
+ elif min(img.size) >= 512:
97
+ img = resize_image(img, 512)
98
+ elif max(img.size) >= 768:
99
+ img = resize_image(img, 768, sdxl_resize=True)
100
+ elif max(img.size) >= 512:
101
+ img = resize_image(img, 512, sdxl_resize=True)
102
+
103
+ pixel_values = extractor(img, return_tensors="pt").pixel_values.to("cpu")
104
+ outputs = model(pixel_values)
105
+ logits = outputs.logits
106
+ logits = nn.functional.interpolate(outputs.logits.detach().cpu(),
107
+ size=img.size[::-1], # (height, width)
108
+ mode='bilinear',
109
+ align_corners=False)
110
+ # Second, apply argmax on the class dimension
111
+ seg = logits.argmax(dim=1)[0]
112
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
113
+ palette = np.array(ade_palette())
114
+ for label, color in enumerate(palette):
115
+ color_seg[seg == label, :] = color
116
+ # Convert to BGR
117
+ color_seg = color_seg[..., ::-1]
118
+
119
+ # Show image + mask
120
+ img = np.array(img) * 0.5 + color_seg * 0.5
121
+ img = img.astype(np.uint8)
122
+ img = Image.fromarray(img)
123
+ return img
124
+ # Create a Gradio interface
125
+ iface = gr.Interface(
126
+ fn=run,
127
+ inputs=gr.Image(label="Input image", type="pil"),
128
+ examples=["1.jpg" , "2.jpg", "3.jpg" , "4.jpg", "5.jpg" , "6.jpg"],
129
+ outputs=gr.Image(label="Output image with predicted instance Masks", type="pil"),
130
+ title="Image Segmentation with Segments-Sidewalk-SegFormer-B0",
131
+ description="Upload an image, and this app will perform image segmentation and display the result",
132
+ )
133
+
134
+ # Launch the app
135
+ iface.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ numpy
2
+ torch
3
+ Pillow
4
+ transformers