File size: 6,195 Bytes
185b582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from torch import nn
import numpy as np
from PIL import Image 
import gradio as gr 
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
            [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
            [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
            [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
            [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
            [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
            [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
            [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
            [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
            [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
            [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
            [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
            [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
            [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
            [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
            [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
            [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
            [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
            [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
            [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
            [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
            [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
            [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
            [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
            [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
            [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
            [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
            [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
            [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
            [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
            [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
            [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
            [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
            [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
            [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
            [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
            [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
            [102, 255, 0], [92, 0, 255]]
            
def resize_image(image, new_size, sdxl_resize=None):
    """
    Resizes the given image while maintaining its aspect ratio.

    Args:
        image (PIL.Image): The image to be resized.
        new_size (int): The new size (width or height) to resize the image to.
        sdxl_resize (bool, optional): Flag indicating whether to resize based on \
            the larger dimension. Default is None.

    Returns:
        PIL.Image: The resized image.
    """
    original_width, original_height = image.size

    if sdxl_resize:
        value = max(original_height, original_width)
    else:
        value = min(original_height, original_width)

    # Determine which side to fix based on minimum width or height
    if value == original_height:
        aspect_ratio = original_width / original_height
        new_height = new_size
        new_width = int(new_height * aspect_ratio)
    else:
        aspect_ratio = original_height / original_width
        new_width = new_size
        new_height = int(new_width * aspect_ratio)

    resized_image = image.resize((new_width, new_height))

    # Ensure that both dimensions are multiples of 64
    w, h = resized_image.size
    w, h = map(lambda x: x - x % 64, (w, h))
    resized_image = resized_image.resize((w, h))

    return resized_image      
            
            
def run(img):
  extractor = AutoFeatureExtractor.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
  model = SegformerForSemanticSegmentation.from_pretrained("mohit-mahavar/segformer-b0-finetuned-segments-sidewalk-july-24")
  
  if min(img.size) >= 768:
     img = resize_image(img, 768)
  elif max(img.size) >= 1024:
     img = resize_image(img, 1024, sdxl_resize=True)
  elif min(img.size) >= 512:
    img = resize_image(img, 512)
  elif max(img.size) >= 768:
    img = resize_image(img, 768, sdxl_resize=True)
  elif max(img.size) >= 512:
    img = resize_image(img, 512, sdxl_resize=True)

  pixel_values = extractor(img, return_tensors="pt").pixel_values.to("cpu")
  outputs = model(pixel_values)
  logits = outputs.logits
  logits = nn.functional.interpolate(outputs.logits.detach().cpu(),
                size=img.size[::-1], # (height, width)
                mode='bilinear',
                align_corners=False)
    # Second, apply argmax on the class dimension
  seg = logits.argmax(dim=1)[0]
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
  palette = np.array(ade_palette())
  for label, color in enumerate(palette):
      color_seg[seg == label, :] = color
  # Convert to BGR
  color_seg = color_seg[..., ::-1]

  # Show image + mask
  img = np.array(img) * 0.5 + color_seg * 0.5
  img = img.astype(np.uint8)
  img = Image.fromarray(img)
  return img 
# Create a Gradio interface
iface = gr.Interface(
    fn=run,
    inputs=gr.Image(label="Input image", type="pil"),
    examples=["1.jpg" , "2.jpg", "3.jpg" , "4.jpg", "5.jpg" , "6.jpg"], 
    outputs=gr.Image(label="Output image with predicted instance Masks", type="pil"),
    title="Image Segmentation with Segments-Sidewalk-SegFormer-B0",
    description="Upload an image, and this app will perform image segmentation and display the result",
)

# Launch the app
iface.launch(debug=True)